Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields

被引:0
|
作者
Anuradha Sharma
Taranjot Kaur
机构
[1] IIIT-Delhi,Department of Mathematics
[2] IIT Delhi,Department of Mathematics
来源
关键词
Sesquilinear forms; Totally isotropic spaces; Witt index; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} denote the finite field of order q, and let ℓ,m be positive integers with gcd(m,q)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gcd (m,q)=1.$\end{document} In this paper, we enumerate all self-orthogonal, self-dual and complementary-dual ℓ-quasi-cyclic codes of length mℓ over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} by placing the Euclidean inner product on Fqmℓ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{m\ell }.$\end{document}
引用
收藏
页码:401 / 435
页数:34
相关论文
共 50 条
  • [21] The number of self-dual cyclic codes over finite fields
    Zhang, Qiang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5795 - 5803
  • [22] Some results on self-orthogonal and self-dual codes
    Georgiou, S
    Koukouvinos, C
    Seberry, J
    ARS COMBINATORIA, 2003, 68 : 97 - 104
  • [23] Some optimal self-orthogonal and self-dual codes
    Bouyuklieva, S
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 1 - 10
  • [24] Self-dual codes and orthogonal matrices over large finite fields
    Shi, Minjia
    Sok, Lin
    Sole, Patrick
    Calkavur, Selda
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 297 - 314
  • [25] Good self-dual generalized quasi-cyclic codes exist
    Shi, Minjia
    Qian, Liqin
    Liu, Yan
    Sole, Patrick
    INFORMATION PROCESSING LETTERS, 2017, 118 : 21 - 24
  • [26] Self-dual and maximal self-orthogonal codes over F7
    Harada, M
    Östergård, PRJ
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 471 - 477
  • [27] Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field
    Sharma, Anuradha
    DISCRETE MATHEMATICS, 2015, 338 (04) : 576 - 592
  • [28] Mass formulae for Euclidean self-orthogonal and self-dual codes over finite commutative chain rings (vol 344, 112152, 2023)
    Yadav, Monika
    Sharma, Anuradha
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [29] Self-dual and self-orthogonal negacyclic codes of length 2pn over a finite field
    Bakshi, Gurmeet K.
    Raka, Madhu
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 19 (01) : 39 - 54
  • [30] An infinite family of Griesmer quasi-cyclic self-orthogonal codes
    Kim, Bohyun
    Lee, Yoonjin
    Yoo, Jinjoo
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76