Bounds for Local Density of Sphere Packings and the Kepler Conjecture

被引:0
|
作者
J. C. Lagarias
机构
[1] AT&T Labs - Research,
[2] Florham Park,undefined
[3] NJ 07932-0971,undefined
[4] USA jcl@research.att.com,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper formalizes the local density inequality approach to getting upper bounds for sphere packing densities in Rn . This approach was first suggested by L. Fejes Tóth in 1953 as a method to prove the Kepler conjecture that the densest packing of unit spheres in R3 has density π/\sqrt 18 , which is attained by the ``cannonball packing.’’ Local density inequalities give upper bounds for the sphere packing density formulated as an optimization problem of a nonlinear function over a compact set in a finite-dimensional Euclidean space. The approaches of Fejes Tóth, of Hsiang, and of Hales to the Kepler conjecture are each based on (different) local density inequalities. Recently Hales, together with Ferguson, has presented extensive details carrying out a modified version of the Hales approach to prove the Kepler conjecture. We describe the particular local density inequality underlying the Hales and Ferguson approach to prove Kepler’s conjecture and sketch some features of their proof.
引用
收藏
页码:165 / 193
页数:28
相关论文
共 50 条
  • [41] NOTES ON SPHERE PACKINGS
    LEECH, J
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (02): : 251 - &
  • [42] Minkowski Tensors and Local Structure Metrics: Amorphous and Crystalline Sphere Packings
    Schroeder-Turk, G. E.
    Schielein, R.
    Kapfer, S. C.
    Schaller, F. M.
    Delaney, G. W.
    Senden, T.
    Saadatfar, M.
    Aste, T.
    Mecke, K.
    POWDERS AND GRAINS 2013, 2013, 1542 : 349 - 352
  • [43] Regular sphere packings
    H. Harborth
    L. Szabó
    Z. Ujváry-Menyhárt
    Archiv der Mathematik, 2002, 78 : 81 - 89
  • [44] Sphere packings, I
    T. C. Hales
    Discrete & Computational Geometry, 1997, 17 : 1 - 51
  • [45] Sphere Packings, II
    T. C. Hales
    Discrete & Computational Geometry, 1997, 18 : 135 - 149
  • [46] A FORMAL PROOF OF THE KEPLER CONJECTURE
    Hales, Thomas
    Adams, Mark
    Bauer, Gertrud
    Tat Dat Dang
    Harrison, John
    Le Truong Hoang
    Kaliszyk, Cezary
    Magron, Victor
    Mclaughlin, Sean
    Tat Thang Nguyen
    Quang Truong Nguyen
    Nipkow, Tobias
    Obua, Steven
    Pleso, Joseph
    Rute, Jason
    Solovyev, Alexey
    Thi Hoai An Ta
    Nam Trung Tran
    Thi Diep Trieu
    Urban, Josef
    Vu, Ky
    Zumkeller, Roland
    FORUM OF MATHEMATICS PI, 2017, 5
  • [47] The Kepler Problem S‐Sphere and the Kepler Manifold
    M.D. Vivarelli
    Meccanica, 1998, 33 : 541 - 551
  • [48] Historical Overview of the Kepler Conjecture
    Thomas C. Hales
    Discrete & Computational Geometry, 2006, 36 : 5 - 20
  • [49] A Revision of the Proof of the Kepler Conjecture
    Thomas C. Hales
    John Harrison
    Sean McLaughlin
    Tobias Nipkow
    Steven Obua
    Roland Zumkeller
    Discrete & Computational Geometry, 2010, 44 : 1 - 34
  • [50] ON A STRONG VERSION OF THE KEPLER CONJECTURE
    Bezdek, Karoly
    MATHEMATIKA, 2013, 59 (01) : 23 - 30