Singular Perturbations and Operators in Rigged Hilbert Spaces

被引:0
|
作者
Salvatore di Bella
Camillo Trapani
机构
[1] Università di Palermo,Dipartimento di Matematica e Informatica
来源
关键词
Regular operators; singular operators; rigged Hilbert spaces; 47L60; 47A70;
D O I
暂无
中图分类号
学科分类号
摘要
A notion of regularity and singularity for a special class of operators acting in a rigged Hilbert space D⊂H⊂D×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} \subset \mathcal{H}\subset \mathcal{D}^\times}$$\end{document} is proposed and it is shown that each operator decomposes into a sum of a regular and a singular part. This property is strictly related to the corresponding notion for sesquilinear forms. A particular attention is devoted to those operators that are neither regular nor singular, pointing out that a part of them can be seen as perturbation of a self-adjoint operator on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}. Some properties for such operators are derived and some examples are discussed.
引用
收藏
页码:2011 / 2024
页数:13
相关论文
共 50 条
  • [41] DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES
    ALBEVERIO, S
    HOEGHKROHN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01): : 1 - 57
  • [42] Resonances and time reversal operator in rigged Hilbert spaces
    Gadella, M
    de la Madrid, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 93 - 113
  • [43] Operators in Hilbert Spaces
    Fragoulopoulou, Maria
    Trapani, Camillo
    LOCALLY CONVEX QUASI *-ALGEBRAS AND THEIR REPRESENTATIONS, 2020, 2257 : 237 - 248
  • [44] Compact and Finite Rank Perturbations of Closed Linear Operators and Relations in Hilbert Spaces
    Azizov, Tomas Ya.
    Behrndt, Jussi
    Jonas, Peter
    Trunk, Carsten
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (02) : 151 - 163
  • [45] Compact and Finite Rank Perturbations of Closed Linear Operators and Relations in Hilbert Spaces
    Tomas Ya. Azizov
    Jussi Behrndt
    Peter Jonas
    Carsten Trunk
    Integral Equations and Operator Theory, 2009, 63 : 151 - 163
  • [46] Spectra of a class of non-symmetric operators in Hilbert spaces with applications to singular differential operators
    Sun, Huaqing
    Xie, Bing
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (04) : 1769 - 1790
  • [47] SINGULAR PERTURBATIONS OF SELFADJOINT OPERATORS
    GLIMM, J
    JAFFE, A
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1969, 22 (03) : 401 - &
  • [48] Singular Perturbations of Elliptic Operators
    Dyachenko, E.
    Tarkhanov, N.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 1: PDE, DIFFERENTIAL GEOMETRY, RADON TRANSFORM, 2015, 653 : 117 - 136
  • [49] SINGULAR PERTURBATIONS AND DIFFERENCES OPERATORS
    FRANK, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (11): : 859 - 862
  • [50] Application of the Rigged Hilbert Spaces into the Generalized Signals & Systems Theory
    Heredia-Juesas, J.
    Gago-Ribas, E.
    Vidal-Garcia, P.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1365 - 1368