Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1

被引:0
|
作者
Enrique Javier Carvajal-Barriga
Wendy Fitzgerald
Emilios K. Dimitriadis
Leonid Margolis
R. Douglas Fields
机构
[1] National Institutes of Health,Nervous System Development and Plasticity Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development
[2] Pontificia Universidad Católica del Ecuador,Neotropical Center for the Biomass Research
[3] National Institutes of Health,Section On Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development
[4] National Institutes of Health,Biomedical Engineering and Physical Science Shared Resource Program, National Institute of Biomedical Imaging and Bioengineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biomaterials with antimicrobial activity are gaining attention due to their biodegradability and efficacy in interacting with a wide range of microorganisms. A new cellulose nano-biomaterial, endospermic nanocellulose crystals (ENC) obtained from parenchymal tissue of ivory nut endosperm, has a natural capacity as a universal binder. This feature is enhanced when it is chemically functionalized, and can be exploited in the fight against microbes. We tested the ability of sulfated ENC in aqueous suspension to encapsulate viruses through a crosslinking reaction mediated by cations. 0.25% w/v ENC suspensions efficiently encapsulated spike (S) protein, preventing its interaction with ACE2 receptor. ENC was further able to encapsulate SARS-CoV-2 pseudoviruses and prevent infection of 293T-hsACE2 cells. ENC also suppressed infection of MT-4 cells with HIV-1LAI.04. This antiviral activity of sulfated ENC is due to the irreversible interaction of ENC with viral particles mediated by crosslinking, as antiviral activity was less effective in the absence of cations. Additionally, ENC was used as a matrix to immobilize recombinant ACE2 receptors and anti-S IgG, creating molecular lures that efficiently inhibited SARS-CoV-2 infections in vitro. These results show that sulfated ENC from ivory nuts can be used as an efficient antiviral material.
引用
收藏
相关论文
共 50 条
  • [31] Intrauterine Transmission of SARS-CoV-2
    Schueda Stonoga, Emanuele Therezinha
    Lanzoni, Laura de Almeida
    Rebutini, Patricia Zadorosnei
    Permegiani de Oliveira, Andre Luiz
    Chiste, Jullie Anne
    Fugaca, Cyllian Arias
    Marani Pra, Daniele Margarita
    Percicote, Ana Paula
    Rossoni, Andrea
    Nogueira, Meri Bordignon
    de Noronha, Lucia
    Raboni, Sonia Mara
    EMERGING INFECTIOUS DISEASES, 2021, 27 (02) : 638 - 641
  • [32] Transmission and prevention of SARS-CoV-2
    Wang, Zhongyi
    Fu, Yingying
    Guo, Zhendong
    Li, Jiaming
    Li, Jingjing
    Cheng, Hongliang
    Lu, Bing
    Sun, Qiang
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2307 - 2316
  • [33] Transmission routes of SARS-CoV-2
    Patel, Jay
    JOURNAL OF DENTAL SCIENCES, 2020, 15 (04) : 550 - 550
  • [34] Airborne transmission of SARS-CoV-2
    Prather, Kimberly A.
    Marr, Linsey C.
    Schooley, Robert T.
    McDiarmid, Melissa A.
    Wilson, Mary E.
    Milton, Donald K.
    SCIENCE, 2020, 370 (6514) : 303 - 304
  • [35] Transmission of SARS-CoV-2 RESPONSE
    Meyerowitz, Eric A.
    Richterman, Aaron
    Gandhi, Rajesh T.
    Sax, Paul E.
    ANNALS OF INTERNAL MEDICINE, 2021, 174 (07) : 1037 - 1037
  • [36] Transmission of SARS-CoV-2 by Children
    Merckx, Joanna
    Labrecque, Jeremy A.
    Kaufman, Jay S.
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2020, 117 (33-34): : 553 - +
  • [37] Routes of transmission of SARS-CoV-2
    Gupta, Harish
    Gautam, Medhavi
    Kumar, Satish
    Kumar, Amit
    JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2022, 11 (11) : 7493 - 7494
  • [38] Household Transmission of SARS-CoV-2
    Metlay, Joshua P.
    Haas, Jennifer S.
    Soltoff, Alexander E.
    Armstrong, Katrina A.
    JAMA NETWORK OPEN, 2021, 4 (02)
  • [39] Indoor transmission of SARS-CoV-2
    Qian, Hua
    Miao, Te
    Liu, Li
    Zheng, Xiaohong
    Luo, Danting
    Li, Yuguo
    INDOOR AIR, 2021, 31 (03) : 639 - 645
  • [40] Household transmission of SARS-CoV-2
    Wang, Zhongliang
    Ma, Wanli
    Zheng, Xin
    Wu, Gang
    Zhang, Ruiguang
    JOURNAL OF INFECTION, 2020, 81 (01) : 179 - 182