Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level

被引:0
|
作者
Jia-Yi Cao
You-Ping Xu
Li Zhao
Shuang-Sheng Li
Xin-Zhong Cai
机构
[1] Zhejiang University,Institute of Biotechnology, College of Agriculture and Biotechnology
[2] Zhejiang University,Centre of Analysis and Measurement
来源
Plant Molecular Biology | 2016年 / 92卷
关键词
MiRNA; Post-transcriptional gene silencing; Resistance;
D O I
暂无
中图分类号
学科分类号
摘要
MicroRNAs (miRNAs) are multifunctional non-coding short nucleotide molecules. Nevertheless, the role of miRNAs in the interactions between plants and necrotrophic pathogens is largely unknown. Here, we report the identification of the miRNA repertoire of the economically important oil crop oilseed rape (Brassica napus) and those involved in interacting with its most devastating necrotrophic pathogen Sclerotinia sclerotiorum. We identified 280 B. napus miRNA candidates, including 53 novel candidates and 227 canonical members or variants of known miRNA families, by high-throughput deep sequencing of small RNAs from both normal and S. sclerotiorum-inoculated leaves. Target genes of 15 novel candidates and 222 known miRNAs were further identified by sequencing of degradomes from the two types of samples. MiRNA microarray analysis revealed that 68 miRNAs were differentially expressed between S. sclerotiorum-inoculated and uninoculated leaves. A set of these miRNAs target genes involved in plant defense to S. sclerotiorum and/or other pathogens such as nucleotide binding site-leucine-rich repeat (NBS-LRR) R genes and nitric oxygen and reactive oxygen species related genes. Additionally, three miRNAs target AGO1 and AGO2, key components of post-transcriptional gene silencing (PTGS). Expression of several viral PTGS suppressors reduced resistance to S. sclerotiorum. Arabidopsis mutants of AGO1 and AGO2 exhibited reduced resistance while transgenic lines over-expressing AGO1 displayed increased resistance to S. sclerotiorum in an AGO1 expression level-dependent manner. Moreover, transient over-expression of miRNAs targeting AGO1 and AGO2 decreased resistance to S. sclerotiorum in oilseed rape. Our results demonstrate that the interactions between B. napus and S. sclerotiorum are tightly regulated at miRNA level and probably involve PTGS.
引用
收藏
页码:39 / 55
页数:16
相关论文
共 50 条
  • [21] Characterization of Defense Signaling Pathways of Brassica napus and Brassica carinata in Response to Sclerotinia sclerotiorum Challenge
    Bo Yang
    Muhammad H. Rahman
    Yue Liang
    Saleh Shah
    Nat N. V. Kav
    Plant Molecular Biology Reporter, 2010, 28 : 253 - 263
  • [22] Characterization of Defense Signaling Pathways of Brassica napus and Brassica carinata in Response to Sclerotinia sclerotiorum Challenge
    Yang, Bo
    Rahman, Muhammad H.
    Liang, Yue
    Shah, Saleh
    Kav, Nat N. V.
    PLANT MOLECULAR BIOLOGY REPORTER, 2010, 28 (02) : 253 - 263
  • [23] Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus
    Jiqiang Li
    Zunkang Zhao
    Alice Hayward
    Hongyu Cheng
    Donghui Fu
    Euphytica, 2015, 205 : 483 - 489
  • [24] Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum
    Y. Fan
    K. Du
    Y. Gao
    Y. Kong
    C. Chu
    V. Sokolov
    Y. Wang
    Russian Journal of Genetics, 2013, 49 : 380 - 387
  • [25] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea
    Yijuan Ding
    Jiaqin Mei
    Qinfei Li
    Yao Liu
    Huafang Wan
    Lei Wang
    Heiko C. Becker
    Wei Qian
    Genetic Resources and Crop Evolution, 2013, 60 : 1615 - 1619
  • [26] Evaluation of Brassica napus accessions for resistance to Sclerotinia sclerotiorum in greenhouse and field conditions
    Khot, S.
    Bradley, C.
    Bilgi, V.
    del Rio, L.
    PHYTOPATHOLOGY, 2005, 95 (06) : S53 - S53
  • [27] Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum
    Zhao, Jianwei
    Buchwaldt, Lone
    Rimmer, Samuel Roger
    Sharpe, Andrew
    McGregor, Linda
    Bekkaoui, Diana
    Hegedus, Dwayne
    MOLECULAR PLANT PATHOLOGY, 2009, 10 (05) : 635 - 649
  • [28] Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set
    Taylor, A.
    Coventry, E.
    Jones, J. E.
    Clarkson, J. P.
    PLANT PATHOLOGY, 2015, 64 (04) : 932 - 940
  • [29] Analysis of Tissue-Specific Defense Responses to Sclerotinia sclerotiorum in Brassica napus
    Liu, Jie
    Zuo, Rong
    He, Yizhou
    Zhou, Cong
    Yang, Lingli
    Gill, Rafaqat Ali
    Bai, Zetao
    Zhang, Xiong
    Liu, Yueying
    Cheng, Xiaohui
    Huang, Junyan
    PLANTS-BASEL, 2022, 11 (15):
  • [30] Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus
    Li, Wei
    Lu, Junxing
    Yang, Chenghuizi
    Xia, Shitou
    FRONTIERS IN PLANT SCIENCE, 2022, 13