Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century

被引:0
|
作者
Tianci Yao
Hongwei Lu
Wei Feng
Qing Yu
机构
[1] Institute of Geographic Sciences and Natural Resources Research,Key Laboratory of Water Cycle and Related Land Surface Processes
[2] Chinese Academy of Sciences,undefined
[3] University of Chinese Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Pan evaporation (Epan) was regarded as a critical indicator of climate change, especially in the Qinghai-Tibet Plateau (QTP). By using the measured daily Epan data of 274 stations in the QTP from 1970 to 2017, the study detected abrupt changes in annual Epan series in different spatial scales, through integrating the Mann-Kendall abrupt change test, moving t-test and piecewise linear fitting model. Results showed that abrupt changes existed generally in the QTP where mean and trend abrupt changes were detected in 76.6% and 97.8% of 274 stations during the last half-century. Major abrupt change time of mean values and trends was respectively in around 1996, 1989 and 2007. In comparison, early abrupt changes were observed in the south (south of 30°N) and north (north of 35°N) but late ones in the midland (30–35°N). Corresponding to the low frequent behaviors, pan evaporation paradox only existed in the QTP as a whole in 1970–1990 and was not apparent at site scale, with less than 9.5% of 274 stations detected in different periods. The results confirmed prevailing abrupt change of pan evaporation and its distinct spatial pattern in the QTP.
引用
收藏
相关论文
共 50 条
  • [31] Xanthone glycosides in Gentianceae of Qinghai-Tibet Plateau
    Zhang, XF
    ADVANCES IN PLANT GLYCOSIDES, CHEMISTRY AND BIOLOGY, 1999, 6 : 320 - 322
  • [32] The main natural hazards on the Qinghai-Tibet Plateau
    Zhu, LP
    GLOBAL CHANGE IN THE MOUNTAINS, 1999, : 161 - 163
  • [33] The Economic Development Patterns of Qinghai-Tibet Plateau
    Kong, Rui
    Yu, Sha
    Chen, Jun-wei
    INTERNATIONAL CONFERENCE ON ENERGY AND POWER ENGINEERING (EPE 2014), 2014, : 440 - 450
  • [35] The process and mechanism of the rise of the Qinghai-Tibet Plateau
    Li, TD
    TECTONOPHYSICS, 1996, 260 (1-3) : 45 - 53
  • [36] Permafrost temperatures and thickness on the Qinghai-Tibet Plateau
    Wu, Qingbai
    Zhang, Tingjun
    Liu, Yongzhi
    GLOBAL AND PLANETARY CHANGE, 2010, 72 (1-2) : 32 - 38
  • [37] The electrical structure of northeastern Qinghai-Tibet plateau
    Ma, XB
    Kong, XR
    Liu, HB
    Yan, YL
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (03): : 689 - 697
  • [38] TECTONIC EVOLUTION AND UPLIFT OF THE QINGHAI-TIBET PLATEAU
    XIAO, XC
    LI, TD
    EPISODES, 1995, 18 (1-2): : 31 - 35
  • [39] Information System of the Wetlands on the Qinghai-tibet Plateau
    Wu, Huizhi
    Jiang, Qigang
    Li, Yuanhua
    Bai, Chaojun
    Jing, Ying
    JOURNAL OF COMPUTERS, 2014, 9 (12) : 2792 - 2796
  • [40] Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau
    Harris, Stuart A.
    Jin, HuiJun
    He, RuiXia
    Yang, SiZhong
    SCIENCES IN COLD AND ARID REGIONS, 2018, 10 (03): : 187 - 206