On the Degree of Approximation by Manifolds of Finite Pseudo-Dimension

被引:0
|
作者
V. Maiorov
J. Ratsaby
机构
[1] Technion,Department of Mathematics
[2] Technion,Department of Electrical Engineering
来源
关键词
Key words. Nonlinear widths, Pseudo-Dimension, Sobolev class. AMS Classification. 41A45, 41A46, 42A10, 42A61.;
D O I
暂无
中图分类号
学科分类号
摘要
The pseudo-dimension of a real-valued function class is an extension of the VC dimension for set-indicator function classes. A class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \cal H$ \end{document} of finite pseudo-dimension possesses a useful statistical smoothness property. In [10] we introduced a nonlinear approximation width \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \rho_n({\cal F}, L_q) $ \end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ inf_{{\cal H}^n} \mbox{dist}({\cal F}, {\cal H}^n, L_q) $ \end{document} which measures the worst-case approximation error over all functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ f\in {\cal F} $ \end{document} by the best manifold of pseudo-dimension n . In this paper we obtain tight upper and lower bounds on ρn (Wr,dp, Lq) , both being a constant factor of n-r/d , for a Sobolev class Wr,dp , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ 1 \leq p, q \leq \infty $ \end{document} . As this is also the estimate of the classical Alexandrov nonlinear n -width, our result proves that approximation of Wr,dp by the family of manifolds of pseudo-dimension n is as powerful as approximation by the family of all nonlinear manifolds with continuous selection operators.
引用
收藏
页码:291 / 300
页数:9
相关论文
共 50 条