The pseudo-dimension of a real-valued function class is an extension of the VC dimension for set-indicator function classes. A class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \cal H$ \end{document} of finite pseudo-dimension possesses a useful statistical smoothness property. In [10] we introduced a nonlinear approximation width \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \rho_n({\cal F}, L_q) $ \end{document} = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ inf_{{\cal H}^n} \mbox{dist}({\cal F}, {\cal H}^n, L_q) $ \end{document} which measures the worst-case approximation error over all functions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ f\in {\cal F} $ \end{document} by the best manifold of pseudo-dimension n . In this paper we obtain tight upper and lower bounds on ρn (Wr,dp, Lq) , both being a constant factor of n-r/d , for a Sobolev class Wr,dp , \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ 1 \leq p, q \leq \infty $ \end{document} . As this is also the estimate of the classical Alexandrov nonlinear n -width, our result proves that approximation of Wr,dp by the family of manifolds of pseudo-dimension n is as powerful as approximation by the family of all nonlinear manifolds with continuous selection operators.