Nilpotence and duality in the complete cohomology of a module

被引:0
|
作者
Jon F. Carlson
机构
[1] University of Georgia,Department of Mathematics
关键词
Cohomology of groups; Cohomology rings; Tate cohomology; Complete projective resolutions; 20C20; 20J06; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a finite group and k is a field of characteristic p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}. We consider the complete cohomology ring EM∗=∑n∈ZExt^kGn(M,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^* = \sum _{n \in {\mathbb Z}} \widehat{{\text {Ext}}}^n_{kG}(M,M)$$\end{document}. We show that the ring has two distinguished ideals I∗⊆J∗⊆EM∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^* \subseteq J^* \subseteq {\mathcal {E}}_M^*$$\end{document} such that I∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^*$$\end{document} is bounded above in degrees, EM∗/J∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^*/J^*$$\end{document} is bounded below in degree and J∗/I∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^*/I^*$$\end{document} is eventually periodic with terms of bounded dimension. We prove that if M is neither projective nor periodic, then the subring of all elements in negative degrees in EM∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^*$$\end{document} is a nilpotent algebra.
引用
收藏
页码:647 / 660
页数:13
相关论文
共 50 条