Nilpotence and duality in the complete cohomology of a module

被引:0
|
作者
Jon F. Carlson
机构
[1] University of Georgia,Department of Mathematics
关键词
Cohomology of groups; Cohomology rings; Tate cohomology; Complete projective resolutions; 20C20; 20J06; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a finite group and k is a field of characteristic p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}. We consider the complete cohomology ring EM∗=∑n∈ZExt^kGn(M,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^* = \sum _{n \in {\mathbb Z}} \widehat{{\text {Ext}}}^n_{kG}(M,M)$$\end{document}. We show that the ring has two distinguished ideals I∗⊆J∗⊆EM∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^* \subseteq J^* \subseteq {\mathcal {E}}_M^*$$\end{document} such that I∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^*$$\end{document} is bounded above in degrees, EM∗/J∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^*/J^*$$\end{document} is bounded below in degree and J∗/I∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^*/I^*$$\end{document} is eventually periodic with terms of bounded dimension. We prove that if M is neither projective nor periodic, then the subring of all elements in negative degrees in EM∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_M^*$$\end{document} is a nilpotent algebra.
引用
收藏
页码:647 / 660
页数:13
相关论文
共 50 条
  • [1] Nilpotence and duality in the complete cohomology of a module
    Carlson, Jon F.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (03): : 647 - 660
  • [2] NILPOTENCE IN GROUP COHOMOLOGY
    Kuhn, Nicholas J.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (01) : 151 - 175
  • [3] Rost nilpotence and etale motivic cohomology
    Rosenschon, Andreas
    Sawant, Anand
    ADVANCES IN MATHEMATICS, 2018, 330 : 420 - 432
  • [4] Rost nilpotence and higher unramified cohomology
    Diaz, H. Anthony
    ADVANCES IN MATHEMATICS, 2019, 355
  • [5] On the nilpotence of the prime radical in module categories
    Arellano, C.
    Castro, J.
    Rios, J.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 32 (02): : 161 - 184
  • [6] Nilpotence and generation in the stable module category
    Benson, David J.
    Carlson, Jon F.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (11) : 3566 - 3584
  • [7] THE HOCHSCHILD COHOMOLOGY RING MODULO NILPOTENCE OF A MONOMIAL ALGEBRA
    Green, Edward L.
    Snashall, Nicole
    Solberg, Oyvind
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (02) : 153 - 192
  • [8] Nilpotence of Frobenius action and the Hodge filtration on local cohomology
    Srinivas, Vasudevan
    Takagi, Shunsuke
    ADVANCES IN MATHEMATICS, 2017, 305 : 456 - 478
  • [9] COHOMOLOGY OPERATIONS AND DUALITY
    MAUNDER, CRF
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 15 - &
  • [10] Nilpotence of Frobenius actions on local cohomology and Frobenius closure of ideals
    Polstra, Thomas
    Pham Hung Quy
    JOURNAL OF ALGEBRA, 2019, 529 : 196 - 225