Generalization of Supersymmetric Quantum Mechanics

被引:0
|
作者
M. Daoud
Y. Hassouni
机构
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Quantum Mechanics; Supersymmetric Quantum Mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
A generalization of supersymmetric quantummechanics can be obtained in two different ways usingthe theory of the q-deformation of the oscillatoralgebra, according to whether q is a root of unity ornot. In the first case the fractional supersymmetricquantum mechanic is between bosons and q-bosons. In thesecond case we obtain the deformed supersymmetricquantum mechanics by considering bosons and a deformed truncated oscillator algebra.
引用
收藏
页码:2021 / 2026
页数:5
相关论文
共 50 条
  • [21] Supersymmetric relativistic quantum mechanics
    Habara, Y
    Nielsen, HB
    Ninomiya, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (06): : 1333 - 1340
  • [22] Supersymmetric Quantum Mechanics and Paraquantization
    Morchedi, O.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 304 - 309
  • [23] Progress in supersymmetric quantum mechanics
    Aref'eva, I
    Fernández, DJ
    Hussin, V
    Negro, J
    Nieto, LM
    Samsonov, BF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43):
  • [24] Duality and supersymmetric quantum mechanics
    Simon, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4143 - 4150
  • [25] QUANTUM SUPERSYMMETRIC GENERALIZATION OF BOGOMOLNYI BOUNDS
    RAJARAMAN, R
    PRAMANA, 1985, 24 (1-2) : 1 - 14
  • [26] Reply to "Comment on 'New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles'"
    Kouri, Donald J.
    Maji, Kaushik
    Markovich, Thomas
    Bittner, Eric R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (05): : 950 - 950
  • [27] ON A POSSIBLE GENERALIZATION OF QUANTUM MECHANICS
    KANENO, T
    PROGRESS OF THEORETICAL PHYSICS, 1960, 23 (01): : 17 - 31
  • [28] Quantum Mechanics as a Simple Generalization of Classical Mechanics
    Don N. Page
    Foundations of Physics, 2009, 39
  • [29] Can quantum mechanics and supersymmetric quantum mechanics be the multidimensional Ermakov theories?
    Kaushal, RS
    Parashar, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 889 - 893
  • [30] Nambu quantum mechanics: a nonlinear generalization of geometric quantum mechanics
    Minic, D
    Tze, CH
    PHYSICS LETTERS B, 2002, 536 (3-4) : 305 - 314