Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices

被引:0
|
作者
Sven-Erik Ekström
Isabella Furci
Stefano Serra-Capizzano
机构
[1] Uppsala University,Department of Information Technology, Division of Scientific Computing, ITC
[2] University of Insubria,Department of Science and High Technology
来源
BIT Numerical Mathematics | 2018年 / 58卷
关键词
Eigenvalues; Asymptotic eigenvalue expansion; Polynomial interpolation; Extrapolation; Block matrices; MSC 15B05; MSC 65F15; MSC 65D05; MSC 65B05;
D O I
暂无
中图分类号
学科分类号
摘要
Precise asymptotic expansions for the eigenvalues of a Toeplitz matrix Tn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n(f)$$\end{document}, as the matrix size n tends to infinity, have recently been obtained, under suitable assumptions on the associated generating function f. A restriction is that f has to be polynomial, monotone, and scalar-valued. In this paper we focus on the case where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document} is an s×s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\times s$$\end{document} matrix-valued trigonometric polynomial with s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}, and Tn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n(\mathbf {f})$$\end{document} is the block Toeplitz matrix generated by f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document}, whose size is N(n,s)=sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(n,s)=sn$$\end{document}. The case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} corresponds to that already treated in the literature. We numerically derive conditions which ensure the existence of an asymptotic expansion for the eigenvalues. Such conditions generalize those known for the scalar-valued setting. Furthermore, following a proposal in the scalar-valued case by the first author, Garoni, and the third author, we devise an extrapolation algorithm for computing the eigenvalues of banded symmetric block Toeplitz matrices with a high level of accuracy and a low computational cost. The resulting algorithm is an eigensolver that does not need to store the original matrix, does not need to perform matrix-vector products, and for this reason is called matrix-less. We use the asymptotic expansion for the efficient computation of the spectrum of special block Toeplitz structures and we provide exact formulae for the eigenvalues of the matrices coming from the Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}_p$$\end{document} Lagrangian Finite Element approximation of a second order elliptic differential problem. Numerical results are presented and critically discussed.
引用
收藏
页码:937 / 968
页数:31
相关论文
共 46 条
  • [21] Exact solution of corner-modified banded block-Toeplitz eigensystems
    Cobanera, Emilio
    Alase, Abhijeet
    Ortiz, Gerardo
    Viola, Lorenza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (19)
  • [22] On solution of large systems of linear equations with block-Toeplitz banded matrices
    Malyshev, A. N.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 153 - 155
  • [23] On solution of large systems of linear equations with block-Toeplitz banded matrices
    A. N. Malyshev
    Doklady Mathematics, 2013, 87 : 153 - 155
  • [24] Generalized Nested Sampling for Compression and Exact Recovery of Symmetric Toeplitz Matrices
    Qiao, Heng
    Pal, Piya
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 443 - 447
  • [25] Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing
    Xue, Xiao
    Xiao, Song
    Gan, Hongping
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2019, E102B (08) : 1565 - 1578
  • [26] Block solver for large, unsymmetric, sparse, banded matrices with symmetric profiles
    Manoj, K.G.
    Bhattacharyya, S.K.
    International Journal for Numerical Methods in Engineering, 1998, 40 (17): : 3279 - 3295
  • [27] A block solver for large, unsymmetric, sparse, banded matrices with symmetric profiles
    Manoj, KG
    Bhattacharyya, SK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (17) : 3279 - 3295
  • [28] Matrix orthogonal polynomials associated with perturbations of block Toeplitz matrices
    Choque-Rivero A.E.
    Garza Gaona L.E.
    Russian Mathematics, 2017, 61 (12) : 57 - 69
  • [29] RECURSIVE ALGORITHMS TO UPDATE A NUMERICAL BASIS MATRIX OF THE NULL SPACE OF THE BLOCK ROW, (BANDED) BLOCK TOEPLITZ, AND BLOCK MACAULAY MATRIX
    Vermeersch, Christof
    DE Moor, Bart
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02): : A596 - A620
  • [30] Eigenvalues and Eigenvectors of Block Skew-circular Symmetric Matrix Whose Block Matrices are Circular Symmetric Matrices
    Zhao, Likuan
    Meng, Lingxia
    Li, Zhen
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 234 - 236