Experimental analysis on hydrodynamic coefficients of an underwater glider with spherical nose for dynamic modeling and motion simulation

被引:0
|
作者
Kambiz Divsalar
Rouzbeh Shafaghat
Mousa Farhadi
Rezvan Alamian
机构
[1] Babol Noshirvani University of Technology,Sea
来源
SN Applied Sciences | 2021年 / 3卷
关键词
Underwater glider; Towing tank; Hydrodynamic coefficients; Motion dynamics modeling; Meta-heuristic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a study of an underwater glider with a cylindrical body, a conical end shape and a spherical nose with NACA0009 airfoil wings. In the experimental section, we investigate the hydrodynamic coefficients of drag and lift as well as the torque on the glider then analyze the launch velocity, launch angles, angular velocity, and displacement range as the main parameters for evaluating of motion dynamics. In the numerical section, we investigate the optimal performance of the glider using the meta-heuristic optimization method in order to find the path and range of motion of the moving mass and control of the sea glider, which is very important for navigation scope. To be specific, body and wings hydrodynamic coefficients are obtained in the velocity range of [0.2, 1] m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m/s$$\end{document}; According to the results, the drag coefficient increases with increasing velocity, while the lift coefficient increases up to velocity of 0.8m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 m/s$$\end{document}, then decreases at velocity of 1m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 m/s$$\end{document}. Also, the wing drag coefficient decreases with increasing velocity, while the wing lift coefficient increases with increasing velocity. In the next step, in order to calculate an optimum ratio between obtained depth and horizontal distance, the designed algorithm investigate the glider launch angle and finally, the 10 degrees launch angle is chosen as the optimum angle. Subsequently, the analysis performed on mass center displacement range shows that the oscillation interval [-0.045,0.085]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[- 0.045, 0.085]$$\end{document} m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is an optimum displacement domain.
引用
收藏
相关论文
共 50 条
  • [31] Experimental determination of the hydrodynamic coefficients of an underwater manipulator
    Lin, CC
    Chen, RC
    Li, TL
    JOURNAL OF ROBOTIC SYSTEMS, 1999, 16 (06): : 329 - 338
  • [32] LONGITUDINAL MOVEMENT MODELING AND SIMULATION FOR HYBRID UNDERWATER GLIDER
    Latifah A.
    Ramelan A.
    Lubis D.H.F.
    Trilaksono B.R.
    Hidayat E.M.I.
    Diagnostyka, 2023, 24 (01):
  • [33] Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider
    Javaid, Muhammad Yasar
    Ovinis, Mark
    Hashim, Fakhruldin B. M.
    Maimun, Adi
    Ahmed, Yasser M.
    Ullah, Barkat
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2017, 9 (04) : 382 - 389
  • [34] Modeling and motion control of a hybrid-driven underwater glider
    Isa, Khalid
    Arshad, M. R.
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2013, 42 (08) : 971 - 979
  • [35] Miniature Underwater Glider: Design, Modeling, and Experimental Results
    Zhang, Feitian
    Thon, John
    Thon, Cody
    Tan, Xiaobo
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 4904 - 4910
  • [36] Analysis Hydrodynamic Characteristics of Variable Mode Wing of Underwater Glider
    Wang, Cheng
    Sun, Tongshuai
    Wang, Yanhui
    Yang, Shaoqionz
    Ma, Wei
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [37] Hydrodynamic Performance Analysis of a Biomimetic Manta Ray Underwater Glider
    Wang, Zhenyu
    Yu, Jiancheng
    Zhang, Aiqun
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 1631 - 1636
  • [38] Dynamic Motion Analysis of a Newly Developed Autonomous Underwater Glider with Rectangular and Tapered Wing
    Javaid, Muhammad Yasar
    Ovinis, Mark
    Thirumalaiswamy, Nagarajan
    Hashim, Fakhruldin B. M.
    Maimun, Adi
    Ullah, Barkat
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2015, 44 (12) : 1928 - 1936
  • [39] Steady-state Spiral Motion Simulation and Turning Speed Analysis of an Underwater Glider
    Yu, Pengyao
    Zhao, Yong
    Wang, Tianlin
    Zhou, Han
    Su, Shaojuan
    Zhen, Chunbo
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 372 - 377
  • [40] Dynamic modeling and motion simulation of underwater vehicles under docking
    Zhou C.
    Zhang W.
    Li D.-J.
    Wang X.
    Yang S.-S.
    Wang X.-Q.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2023, 27 (09): : 1327 - 1336