An integral inequality for the invariant measure of a stochastic reaction–diffusion equation

被引:0
|
作者
Giuseppe Da Prato
Arnaud Debussche
机构
[1] Scuola Normale Superiore di Pisa,
[2] IRMAR,undefined
[3] École Normale,undefined
[4] Supérieure de Rennes,undefined
来源
关键词
Reaction–diffusion equations; invariant measures; Fomin differentiability; surface integrals in Hilbert spaces; 60H15; 35K57; 28C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a reaction–diffusion equation perturbed by noise (not necessarily white). We prove an integral inequality for the invariant measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu}$$\end{document} of a stochastic reaction–diffusion equation. Then, we discuss some consequences as an integration by parts formula which extends to ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu}$$\end{document} a basic identity of the Malliavin Calculus. Finally, we prove the existence of a surface measure for a ball and a half-space of H.
引用
收藏
页码:197 / 214
页数:17
相关论文
共 50 条
  • [41] Invariant measure of stochastic hybrid processes
    Yuan, C
    Lygeros, J
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3209 - 3214
  • [42] Explicit Approximation of Invariant Measure for Stochastic Delay Differential Equations with the Nonlinear Diffusion Term
    Li, Xiaoyue
    Mao, Xuerong
    Song, Guoting
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1850 - 1881
  • [43] Approximation of invariant measure for a stochastic population model with Markov chain and diffusion in a polluted environment
    Kang, Ting
    Du, Yanyan
    Ye, Ming
    Zhang, Qimin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (06) : 6702 - 6719
  • [44] ON ITOS STOCHASTIC INTEGRAL EQUATION
    GIRSANOV, IV
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (01): : 18 - &
  • [45] On a nonlinear stochastic integral equation
    Romeo Negrea
    Monatshefte für Mathematik, 2020, 192 : 905 - 914
  • [46] On a nonlinear stochastic integral equation
    Negrea, Romeo
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (04): : 905 - 914
  • [47] Invariant measure for the schochastic equation system of the Predator-prey model with spatial diffusion
    Hamdous, Saliha
    Manca, Luigi
    Yashima, Hisao Fujita
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 57 - 75
  • [48] A NOTE ON THE INTEGRAL-EQUATION METHOD TO A DIFFUSION-REACTION PROBLEM
    RAMACHANDRAN, MP
    APPLIED MATHEMATICS LETTERS, 1993, 6 (01) : 27 - 30
  • [49] DIFFUSION-CONVECTION-REACTION, FREE BOUNDARIES AND AN INTEGRAL-EQUATION
    GILDING, BH
    KERSNER, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (11): : 743 - 746
  • [50] Invariant measures for stochastic reaction-diffusion equations with weakly dissipative nonlinearities
    Misiats, Oleksandr
    Stanzhytskyi, Oleksandr
    Yip, Nung Kwan
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (08) : 1197 - 1222