An integral inequality for the invariant measure of a stochastic reaction–diffusion equation

被引:0
|
作者
Giuseppe Da Prato
Arnaud Debussche
机构
[1] Scuola Normale Superiore di Pisa,
[2] IRMAR,undefined
[3] École Normale,undefined
[4] Supérieure de Rennes,undefined
来源
关键词
Reaction–diffusion equations; invariant measures; Fomin differentiability; surface integrals in Hilbert spaces; 60H15; 35K57; 28C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a reaction–diffusion equation perturbed by noise (not necessarily white). We prove an integral inequality for the invariant measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu}$$\end{document} of a stochastic reaction–diffusion equation. Then, we discuss some consequences as an integration by parts formula which extends to ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu}$$\end{document} a basic identity of the Malliavin Calculus. Finally, we prove the existence of a surface measure for a ball and a half-space of H.
引用
收藏
页码:197 / 214
页数:17
相关论文
共 50 条