Capsmf: a novel product recommender system using deep learning based text analysis model

被引:0
|
作者
Rahul Katarya
Yamini Arora
机构
[1] Delhi Technological University,Department of Computer Science and Engineering
[2] Department of Information Technology,undefined
[3] Delhi Technological,undefined
来源
关键词
Recommender system; Matrix factorization; Capsule networks; Collaborative filtering;
D O I
暂无
中图分类号
学科分类号
摘要
Researchers and data scientists have developed different Recommender System Algorithms such as Content-Based and Collaborative-Based in order to filter a large amount of information available on the internet and hence, recommend only the relevant and essential content based on the personalized interests of users. Information acquired explicitly by collecting users’ ratings for an item lead to the problem of data sparsity. Many researchers have been currently working towards the improvement of rating prediction accuracy by integrating the auxiliary information along with the ratings provided by the users. This paper proposes a novel product recommender system called as “CapsMF”, it applies the advanced neural network architecture Capsule Networks (Caps) for document representation, and MF represents Matrix factorization. In the proposed approach, we have enhanced a deep neural network text analysis model by adding a newly discovered neural network architecture; Capsule Networks stacked on bi-directional Recurrent Neural Network (Bi-RNN) for the robust representation of textual descriptions of items and users. The Deep Neural Network text analysis model is integrated with the Probabilistic Matrix Factorization to generate improved recommendations. The experiment has been performed on two real amazon datasets resulting in the enhancement of rating prediction accuracy, the recall, and the precision of top-n recommendations, in comparison to the basic and hybrid Recommendation System Algorithms. Also, text analysis model involving Capsule Networks stacked with Recurrent Neural Networks (RNNs) have outperformed the baseline models that have single Convolutional Neural Networks (CNN) or CNN combined with Bi-RNN in text analysis.
引用
收藏
页码:35927 / 35948
页数:21
相关论文
共 50 条
  • [31] Recommender System Based on Unsupervised Clustering and Supervised Deep Learning
    Sahni, Dheeraj Kumar
    Khurana, Dhiraj
    Kumar, Yogesh
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2024,
  • [32] Deep Learning Based Recommender System: A Survey and New Perspectives
    Zhang, Shuai
    Yao, Lina
    Sun, Aixin
    Tay, Yi
    ACM COMPUTING SURVEYS, 2019, 52 (01)
  • [33] Deep Reinforcement Learning based Recommender System with State Representation
    Jiang, Peng
    Ma, Jiafeng
    Zhang, Jianming
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5703 - 5707
  • [34] Text analysis for Bengali Text Summarization using Deep Learning
    Al Munzir, Abdullah
    Rahman, Md. Lutfor
    Abujar, Sheikh
    Ohidujjaman
    Hossain, Syed Akhter
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [35] Review of Text analysis Based on Deep Learning
    Liu Ying
    Li Huidi
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 384 - 388
  • [36] Text Retrieval analysis based on Deep Learning
    Liu, Kai
    Zhang, Limin
    Sun, Yongwei
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 1328 - 1331
  • [37] Deep Learning Based Recommender Systems
    Ouhbi, Brahim
    Frikh, Bouchra
    Zemmouri, El Moukhtar
    Abbad, Abdellwahed
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 161 - 166
  • [38] Deep Learning Based Recommender Systems
    Akay, Bahriye
    Kaynar, Oguz
    Demirkoparan, Ferhan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 645 - 648
  • [39] Deep Group Recommender System Model Based on User Trust
    Song, Yulong
    Ma, Wenming
    Liu, Tongtong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 1015 - 1019
  • [40] Feature Enhancement Based Text Sentiment Classification using Deep Learning Model
    Janardhana, D. R.
    Vijay, C. P.
    Swamy, G. B. Janardhana
    Ganaraj, K.
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,