Minimum vertex cover in ball graphs through local search

被引:0
|
作者
Zhao Zhang
Weili Wu
Lidan Fan
Ding-Zhu Du
机构
[1] Xinjiang University Urumqi,College of Mathematics and System Sciences
[2] University of Texas at Dallas,Department of Computer Science
来源
关键词
Vertex cover; Ball graph; Local search; Separator theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Using local search method, this paper provides a polynomial time approximation scheme for the minimum vertex cover problem on d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional ball graphs where d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 3$$\end{document}. The key to the proof is a new separator theorem for ball graphs in higher dimensional space.
引用
收藏
页码:663 / 671
页数:8
相关论文
共 50 条
  • [31] A rough set method for the minimum vertex cover problem of graphs
    Chen, Jinkun
    Lin, Yaojin
    Li, Jinjin
    Lin, Guoping
    Ma, Zhouming
    Tan, Anhui
    APPLIED SOFT COMPUTING, 2016, 42 : 360 - 367
  • [32] Hybrid Evolutionary Algorithms on Minimum Vertex Cover for Random Graphs
    Pelikan, Martin
    Kalapala, Rajiv
    Hartmann, Alexander K.
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 547 - +
  • [33] PTAS for minimum k-path vertex cover in ball graph
    Zhang, Zhao
    Li, Xiaoting
    Shi, Yishuo
    Nie, Hongmei
    Zhu, Yuqing
    INFORMATION PROCESSING LETTERS, 2017, 119 : 9 - 13
  • [34] On the minimum local-vertex-connectivity augmentation in graphs
    Nagamochi, H
    Ishii, T
    DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) : 475 - 486
  • [35] On the minimum local-vertex-connectivity augmentation in graphs
    Nagamochi, H
    Ishii, T
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 124 - 135
  • [36] An efficient local search for partial vertex cover problem
    Zhou, Yupeng
    Wang, Yiyuan
    Gao, Jian
    Luo, Na
    Wang, Jianan
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (07): : 2245 - 2256
  • [37] An efficient local search for partial vertex cover problem
    Yupeng Zhou
    Yiyuan Wang
    Jian Gao
    Na Luo
    Jianan Wang
    Neural Computing and Applications, 2018, 30 : 2245 - 2256
  • [38] HSMVS: heuristic search for minimum vertex separator on massive graphs
    Luo, Chuan
    Guo, Shanyu
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [39] Effect of constraint relaxation on the minimum vertex cover problem in random graphs
    Dote, Aki
    Hukushima, Koji
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [40] PEAVC: An improved minimum vertex cover solver for massive sparse graphs
    Gu, Jiaqi
    Guo, Ping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104 (104)