More bounds for the Grundy number of graphs

被引:0
|
作者
Zixing Tang
Baoyindureng Wu
Lin Hu
Manoucheher Zaker
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Grundy number; Chromatic number; Clique number; Coloring number; Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
A coloring of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition {V1,V2,…,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_1, V_2, \ldots , V_k\}$$\end{document} of V into independent sets or color classes. A vertex v∈Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_i$$\end{document} is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} for every j<i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<i$$\end{document}. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {P4,C4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{4}, C_4\}$$\end{document}-free graph by supporting a conjecture of Zaker, which says that Γ(G)≥δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)\ge \delta (G)+1$$\end{document} for any C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free graph G.
引用
收藏
页码:580 / 589
页数:9
相关论文
共 50 条
  • [21] Bounds on the domination number of Kneser graphs
    Ostergard, Patric R. J.
    Shao, Zehui
    Xu, Xiaodong
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 197 - 205
  • [22] Bounds on the domination number in oriented graphs
    Blidia, Mostafa
    Ould-Rabah, Lyes
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 231 - 241
  • [23] Bounds on the forcing domination number of graphs
    Karami, H.
    Sheikholeslami, S. M.
    Toomanian, M.
    UTILITAS MATHEMATICA, 2010, 83 : 171 - 178
  • [24] Unified bounds for the independence number of graphs
    Zhou, Jiang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 97 - 117
  • [25] Lower bounds on the obstacle number of graphs
    Mukkamala, Padmini
    Pach, Janos
    Palvoelgyi, Doemoetoer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [26] BOUNDS ON THE DOMINATION NUMBER OF PERMUTATION GRAPHS
    Gu, Weizhen
    Wash, Kirsti
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 205 - 217
  • [27] New bounds for the chromatic number of graphs
    Zaker, Manouchehr
    JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 110 - 122
  • [28] Bicliques in Graphs I: Bounds on Their Number
    Erich Prisner
    Combinatorica, 2000, 20 : 109 - 117
  • [29] Bounds for the independence number of critical graphs
    Brinkmann, G
    Choudum, SA
    Grünewald, S
    Steffen, E
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 137 - 140
  • [30] BOUNDS FOR THE PEBBLING NUMBER OF PRODUCT GRAPHS
    Pleanmani, Nopparat
    Nupo, Nuttawoot
    Worawiset, Somnuek
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 317 - 326