The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation

被引:0
|
作者
G. A. Sviridyuk
V. O. Kazak
机构
[1] Chelyabinsk State University,
来源
Mathematical Notes | 2002年 / 71卷
关键词
Hoff equation; phase space; Banach manifold;
D O I
暂无
中图分类号
学科分类号
摘要
The Hoff equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\lambda + \Delta )u_t = - \alpha u - \beta u^3 $$ \end{document} describes the H-beam buckling dynamics. We show that the phase space of the Hoff equation is a simple \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C^\infty $$ \end{document} Banach manifold modeled on a subspace complementary to the kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{ker}}(\lambda + \Delta )$$ \end{document}.
引用
收藏
页码:262 / 266
页数:4
相关论文
共 50 条
  • [21] On Initial-Boundary Value Problem on Semiaxis for Generalized Kawahara Equation
    Faminskii A.V.
    Martynov E.V.
    Journal of Mathematical Sciences, 2022, 265 (5) : 849 - 864
  • [22] The initial-boundary value problem for the generalized double dispersion equation
    Xiao Su
    Shubin Wang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [23] Initial-Boundary Value Problem for a Nonlinear Beam Vibration Equation
    Sabitov, K. B.
    Akimov, A. A.
    DIFFERENTIAL EQUATIONS, 2020, 56 (05) : 621 - 634
  • [24] The initial-boundary value problem for the generalized double dispersion equation
    Su, Xiao
    Wang, Shubin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [25] ON THE INITIAL-BOUNDARY VALUE-PROBLEM FOR THE BOLTZMANN-EQUATION
    CERCIGNANI, C
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 116 (04) : 307 - 315
  • [26] NUMERICAL SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION
    Bektemesov, Maktagali A.
    Kabanikhin, Sergey I.
    Nurseitov, Daniyar B.
    Kasenov, Syrym Y.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : C4 - C21
  • [27] The linearization of the initial-boundary value problem of the nonlinear Schrodinger equation
    Fokas, AS
    Its, AR
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) : 738 - 764
  • [28] Initial-Boundary Value Problem for Viscoelastic Rectangular Plate Equation
    Wang, Dongbao
    Wang, Yinzhu
    WEB INFORMATION SYSTEMS AND MINING, PT I, 2011, 6987 : 98 - 103
  • [29] Mixed Initial-Boundary Value Problem for the Capillary Wave Equation
    Campos, B. Juarez
    Kaikina, Elena
    Paredes, Hector F. Ruiz
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [30] The Mixed Initial-Boundary Value Problem for Degenerate Hyperbolic Equation
    Kakharman, Nurbek
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 145 - 150