Deciphering the mechanisms of Yinlan Tiaozhi capsule in treating hyperlipidemia by combining network pharmacology, molecular docking and experimental verification

被引:0
|
作者
Guanlin Xiao
Zixuan Hu
Canchao Jia
Minjuan Yang
Dongmei Li
Aili Xu
Jieyi Jiang
Zhao Chen
Yangxue Li
Sumei Li
Weitao Chen
Jingnian Zhang
Xiaoli Bi
机构
[1] Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine,School of the Fifth Clinical Medicine
[2] Guangzhou University of Chinese Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Yinlan Tiaozhi capsule (YLTZC) has been widely used to treat hyperlipidemia (HLP). However, its material basis and underlying pharmacological effects remain unclean. The current study aimed to explore the mechanisms involved in the treatment of YLTZC on HLP based on network pharmacology, molecular docking, and experimental verification. Firstly, UPLC-Q-TOF–MS/MS was used to comprehensively analyze and identify the chemical constituents in YLTZC. A total of 66 compounds, mainly including flavonoids, saponins, coumarins, lactones, organic acids, and limonin were characterized and classified. Simultaneously, the mass fragmentation pattern of different types of representative compounds was further explored. By network pharmacology analysis, naringenin and ferulic acid may be the core constituents. The 52 potential targets of YLTZC, including ALB, IL-6, TNF, and VEGFA, were considered potential therapeutic targets. Molecular docking results showed that the core active constituents of YLTZC (naringenin and ferulic acid) have a strong affinity with the core targets of HLP. Lastly, animal experiments confirmed that naringenin and ferulic acid significantly upregulated the mRNA expression of ALB and downregulated the mRNA expression of IL-6, TNF, and VEGFA. In sum, the constituents of YLTZC, such as naringenin and ferulic acid, might treat HLP by regulating the mechanism of angiogenesis and inhibiting inflammatory responses. Furthermore, our data fills the gap in the material basis of YLTZC.
引用
收藏
相关论文
共 50 条
  • [21] Network Pharmacology and Molecular Docking Elucidate the Pharmacological Mechanism of the OSTEOWONDER Capsule for Treating Osteoporosis
    Fan, Jiashuang
    Zhou, Jianli
    Qu, Zhuan
    Peng, Hangya
    Meng, Shuhui
    Peng, Yaping
    Liu, Tengyan
    Luo, Qiu
    Dai, Lifen
    FRONTIERS IN GENETICS, 2022, 13
  • [22] Analysis of the Mechanism of GuizhiFuling Wan in Treating Adenomyosis Based on Network Pharmacology Combined with Molecular Docking and Experimental Verification
    Shi, Yaxin
    Zhang, Chengyuan
    Wang, Zilu
    Zhang, Yiran
    Liu, Zhiyong
    Wang, Xin
    Shi, Wei
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [23] Network pharmacology, molecular docking and experimental verification reveal the mechanism of Yiguanjian decoction in treating acute liver failure
    Wang, Shuai
    Sun, Yu
    Zhang, Chunmei
    Chen, Bohao
    Zhong, Mei
    Du, Ruili
    Zhou, Yuhang
    Tong, Guangdong
    Luo, Lidan
    EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE, 2024, 65
  • [24] Clinical study, network pharmacology, and molecular docking of Kunxian capsule in treating idiopathic membranous nephropathy
    Lv, Jia
    Gao, Xinyu
    Liu, Lihua
    He, Libing
    Tian, Geng
    Lu, Xuehong
    FRONTIERS IN MEDICINE, 2025, 12
  • [25] Uncovering the Mechanisms of Cinnamic Acid Treating Diabetic Nephropathy based on Network Pharmacology, Molecular Docking, and Experimental Validation
    Dai, Limiao
    He, Yang
    Zheng, Siqiang
    Tang, Jiyu
    Fu, Lanjun
    Zhao, Li
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024,
  • [26] Deciphering the Molecular Targets and Mechanisms of HGWD in the Treatment of Rheumatoid Arthritis via Network Pharmacology and Molecular Docking
    Liu, Wei
    Fan, Yihua
    Tian, Chunying
    Jin, Yue
    Du, Shaopeng
    Zeng, Ping
    Wang, Aihua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2020, 2020
  • [27] Integrated network pharmacology, metabolomics and molecular docking analysis to reveal the mechanisms of quercetin in the treatment of hyperlipidemia
    Chen, Tao
    Wang, Tongtong
    Shi, Yuanxiang
    Deng, Jun
    Yan, Xiao
    Zhang, Chenbin
    Yin, Xin
    Liu, Wen
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2025, 252
  • [28] Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis
    Niu, Chaofeng
    Zhang, Peiyu
    Zhang, Lijing
    Lin, Dingfeng
    Lai, Haixia
    Xiao, Di
    Liu, Yong
    Zhuang, Rui
    Li, Meng
    Ma, Liyong
    Ye, Jiaqi
    Pan, Yi
    MEDICINE, 2023, 102 (39) : E35106
  • [29] Combining Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Effects and Mechanisms of Indirubin on Acute Lymphoblastic Leukemia
    Jin, Lu
    Guan, Yunshuang
    Li, Xue
    Wang, Mingyue
    Shen, Ying
    Wang, Nianxue
    He, Zhixu
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2025, 19 : 1083 - 1103
  • [30] The mechanism of Gejie Zhilao Pill in treating tuberculosis based on network pharmacology and molecular docking verification
    Gao, Yuhui
    Shang, Bingbing
    He, Yanyao
    Deng, Wen
    Wang, Liang
    Sui, Shaoguang
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14