On a class of weakly Einstein Finsler metrics

被引:0
|
作者
Zhongmin Shen
Guojun Yang
机构
[1] Indiana University-Purdue University Indianapolis (IUPUI),Department of Mathematical Sciences
[2] Sichuan University,Department of Mathematics
来源
关键词
Scalar Function; Ricc Curvature; Finsler Space; Constant Sectional Curvature; Finsler Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a special class of Finsler metrics—m-Kropina metrics which are defined by a Riemannian metric and a 1-form. We prove that a weakly Einstein m-Kropina metric must be Einsteinian. Further, we characterize Einstein m-Kropina metrics in very simple conditions under a suitable deformation, and obtain the local structures of m-Kropina metrics which are of constant flag curvature and locally projectively flat with constant flag curvature respectively.
引用
收藏
页码:773 / 790
页数:17
相关论文
共 50 条
  • [21] On Homogeneous Weakly Stretch Finsler Metrics
    Vishkaei, Hosein Tondro
    Toomanian, Megerdich
    Katamy, Reza Chavosh
    Nadjafikhah, Mehdi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 19 - 30
  • [22] On a new class of Finsler metrics
    Yu, Changtao
    Zhu, Hongmei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) : 244 - 254
  • [23] ON A CLASS OF DOUGLAS FINSLER METRICS
    朱红梅
    Acta Mathematica Scientia, 2018, (02) : 695 - 708
  • [24] A NEW CLASS OF FINSLER METRICS
    Rajabi, Tahere
    Sadeghzadeh, Nasrin
    MATEMATICKI VESNIK, 2021, 73 (01): : 1 - 13
  • [25] ON A SPECIAL CLASS OF FINSLER METRICS
    Tayebi, A.
    Peyghan, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2009, 33 (A2): : 179 - 186
  • [26] On a projective class of Finsler metrics
    Najafi, B.
    Shen, Zhongmin
    Tayebi, Akbar
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 70 (1-2): : 211 - 219
  • [27] ON A CLASS OF DOUGLAS FINSLER METRICS
    Zhu, Hongmei
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (02) : 695 - 708
  • [28] A class of homogeneous Finsler metrics
    Tayebi, A.
    Najafi, B.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 265 - 270
  • [29] NEW CLASS OF FINSLER METRICS
    BEIL, RG
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (06) : 659 - 667
  • [30] Constructions of Einstein Finsler metrics by warped product
    Chen, Bin
    Shen, Zhongmin
    Zhao, Lili
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (11)