An Accelerated Smoothing Gradient Method for Nonconvex Nonsmooth Minimization in Image Processing

被引:0
|
作者
Weina Wang
Yunmei Chen
机构
[1] Hangzhou Dianzi University,Department of Mathematics
[2] University of Florida,Department of Mathematics
来源
关键词
Nonconvex and nonsmooth optimization; Image deblurring; Image reconstruction; Smooth approximation; Potential function; Extrapolation; 65F22; 65K05; 94A08; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a fast and provably convergent smoothing gradient descent type algorithm with extrapolation for solving a general class of nonsmooth and nonconvex inverse problems arising from image processing. Our algorithm has a localizer selective policy to switch between gradient descent scheme with or without extrapolation to possibly speed up the decreasing of the smoothed objective function and ensure the convergence. Moreover, the algorithm adaptively reduces the smoothing factor to guarantee that any accumulation point of the generated sequence is an (affine-scaled) Clarke stationary point of the original nonsmooth and nonconvex problem. Extensive numerical experiments and comparisons indicate the effectiveness of the proposed algorithm in natural image deblurring, CT and MRI reconstruction.
引用
收藏
相关论文
共 50 条
  • [21] Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization
    Napsu Karmitsa
    Mario Tanaka Filho
    José Herskovits
    Journal of Optimization Theory and Applications, 2011, 148 : 528 - 549
  • [22] Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
    Zhang, Xiaoya
    Barrio, Roberto
    Angeles Martinez, M.
    Jiang, Hao
    Cheng, Lizhi
    IEEE ACCESS, 2019, 7 : 126515 - 126529
  • [23] Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
    Department of Mathematics, National University of Defense Technology, Changsha, Hunan
    410073, China
    不详
    不详
    410073, China
    arXiv,
  • [24] LINEARLY CONSTRAINED NONSMOOTH AND NONCONVEX MINIMIZATION
    Artina, Marco
    Fornasier, Massimo
    Solombrino, Francesco
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1904 - 1937
  • [25] SUBGRADIENT SAMPLING FOR NONSMOOTH NONCONVEX MINIMIZATION
    Bolte, Jerome
    Le, Tam
    Pauwels, Edouard
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (04) : 2542 - 2569
  • [26] Proximal Linearized Minimization Algorithm for Nonsmooth Nonconvex Minimization Problems in Image Deblurring with Impulse Noise
    Shirong DENG
    Yuchao TANG
    JournalofMathematicalResearchwithApplications, 2024, 44 (01) : 122 - 142
  • [27] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Xin Yang
    Lingling Xu
    Journal of Global Optimization, 2023, 87 : 939 - 964
  • [28] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Yang, Xin
    Xu, Lingling
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 939 - 964
  • [29] A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems
    Sempere, Gregorio M.
    de Oliveira, Welington
    Royset, Johannes O.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [30] Nonconvex nonsmooth optimization via convex–nonconvex majorization–minimization
    A. Lanza
    S. Morigi
    I. Selesnick
    F. Sgallari
    Numerische Mathematik, 2017, 136 : 343 - 381