Absolutely closed semigroups

被引:0
|
作者
Taras Banakh
Serhii Bardyla
机构
[1] Ivan Franko National University of Lviv,Institute of Mathematics
[2] Jan Kochanowski University,Institute of Discrete Mathematics and Geometry
[3] P.J. Šafárik University,undefined
[4] TU Wien,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2024年 / 118卷
关键词
Commutative semigroup; Semilattice; Group; -closed semigroup; Chain-finite semigroup; Periodic semigroup; 22A15; 20M18; 54B30; 54D35; 54H11; 54H12;
D O I
暂无
中图分类号
学科分类号
摘要
Let C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} be a class of topological semigroups. A semigroup X is called absolutely C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document}-closed if for any homomorphism h:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:X\rightarrow Y$$\end{document} to a topological semigroup Y∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\in {\mathcal {C}}$$\end{document}, the image h[X] is closed in Y. Let T1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {1}}\textsf {S}$$\end{document}, T2S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {2}}\textsf {S}$$\end{document}, and TzS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {z}}\textsf {S}$$\end{document} be the classes of T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document}, Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup X is absolutely TzS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {z}}\textsf {S}$$\end{document}-closed if and only if X is absolutely T2S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {2}}\textsf {S}$$\end{document}-closed if and only if X is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup X is absolutely T1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T}_{\!\textsf {1}}\textsf {S}$$\end{document}-closed if and only if X is finite. Also, for a given absolutely C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document}-closed semigroup X we detect absolutely C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document}-closed subsemigroups in the center of X.
引用
收藏
相关论文
共 50 条
  • [41] Spectral inclusions for semigroups of closed operators
    Kunstmann, PC
    SEMIGROUP FORUM, 2000, 60 (02) : 310 - 320
  • [42] INVARIANT MEASURES ON SEMIGROUPS WITH CLOSED TRANSLATIONS
    TSERPES, NA
    MUKHERJE.A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 149 - &
  • [43] On the characterization of topological semigroups on closed intervals
    Ricci, RG
    SEMIGROUP FORUM, 2006, 72 (03) : 419 - 432
  • [44] SEMIGROUPS WITH N-CLOSED SUBSETS
    MELNICHUK, IL
    SEMIGROUP FORUM, 1989, 39 (01) : 105 - 108
  • [45] PARTIAL ORDERS AND THEIR SEMIGROUPS OF CLOSED RELATIONS
    HARDY, DW
    THORNTON, MC
    SEMIGROUP FORUM, 1982, 25 (1-2) : 171 - 184
  • [46] Some homotypical closed varieties of semigroups
    M. Nabi
    S. A. Ahanger
    S. Bano
    A. H. Shah
    Arabian Journal of Mathematics, 2023, 12 : 161 - 172
  • [47] Some homotypical closed varieties of semigroups
    Nabi, M.
    Ahanger, S. A.
    Bano, S.
    Shah, A. H.
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 161 - 172
  • [48] INVARIANT MEASURES ON SEMIGROUPS WITH CLOSED TRANSLATIONS
    TSERPES, NA
    MUKHERJE.A
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01): : 33 - &
  • [49] SATURATED AND EPIMORPHICALLY CLOSED VARIETIES OF SEMIGROUPS
    HIGGINS, PM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (APR): : 153 - 175
  • [50] Spectral Inclusions for Semigroups of Closed Operators
    Peer Christian Kunstmann
    Semigroup Forum, 2000, 60 : 310 - 320