Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells

被引:0
|
作者
Sokbom Kang
Seung Myung Dong
Boh-Ram Kim
Mi Sun Park
Barry Trink
Hyun-Jung Byun
Seung Bae Rho
机构
[1] National Cancer Center,Research Institute
[2] National Cancer Center,Division of Gynecologic Cancer Research, Research Institute and Hospital
[3] The Johns Hopkins University School of Medicine,Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery
来源
Apoptosis | 2012年 / 17卷
关键词
Thioridazine; Apoptosis; Anti-cancer activity; mTOR signaling; Cervical tumorigenesis;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.
引用
收藏
页码:989 / 997
页数:8
相关论文
共 50 条
  • [31] Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment
    Cheng, Haiying
    Shcherba, Marina
    Pendurti, Gopichand
    Liang, Yuanxin
    Piperdi, Bilal
    Perez-Soler, Roman
    LUNG CANCER MANAGEMENT, 2014, 3 (01) : 67 - 75
  • [32] Targeting the PI3K/Akt/mTOR Pathway in Ocular Neovascularization
    Sasore, Temitope
    Reynolds, Alison L.
    Kennedy, Breandan N.
    RETINAL DEGENERATIVE DISEASES: MECHANISMS AND EXPERIMENTAL THERAPY, 2014, 801 : 805 - 811
  • [33] Ginkgolic acid induces apoptosis and autophagy of endometrial carcinoma cells via inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro
    Zhou, L.
    Li, S.
    Sun, J.
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (12) : 2156 - 2164
  • [34] Targeting the PI3K/Akt/mTOR Pathway - Beyond Rapalogs
    Markman, Ben
    Dienstmann, Rodrigo
    Tabernero, Josep
    ONCOTARGET, 2010, 1 (07) : 530 - 543
  • [35] PI3K/Akt/mTOR signaling pathway in cancer stem cells
    Fath, Mohsen Karami
    Ebrahimi, Menooa
    Nourbakhsh, Ehsan
    Hazara, Ahmad Zia
    Mirzaei, Ali
    Shafieyari, Saba
    Salehi, Azadeh
    Hoseinzadeh, Mahsa
    Payandeh, Zahra
    Barati, Ghasem
    PATHOLOGY RESEARCH AND PRACTICE, 2022, 237
  • [36] Targeting the mTOR/AKT/PI3K pathway in paediatric malignancies
    Pearson, A.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S74 - S74
  • [37] Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma
    Zhou, Qian
    Lui, Vivian W. Y.
    Yeo, Winnie
    FUTURE ONCOLOGY, 2011, 7 (10) : 1149 - 1167
  • [38] Targeting the PI3K/AKT/mTOR Signaling Pathway in Medulloblastoma
    Dimitrova, V.
    Arcaro, A.
    CURRENT MOLECULAR MEDICINE, 2015, 15 (01) : 82 - 93
  • [39] Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma
    Sun, Eun Jin
    Wankell, Miriam
    Palamuthusingam, Pranavan
    McFarlane, Craig
    Hebbard, Lionel
    BIOMEDICINES, 2021, 9 (11)
  • [40] PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy
    Liu, Hua
    Zhang, Liqin
    Zhang, Xuyan
    Cui, Zhumei
    ONCOTARGETS AND THERAPY, 2017, 10 : 2865 - 2871