Atomic Operators in Vector Lattices

被引:0
|
作者
Ralph Chill
Marat Pliev
机构
[1] Institut für Analysis,Fakultät für Mathematik
[2] TU Dresden,undefined
[3] Southern Mathematical Institute of the Russian Academy of Sciences,undefined
来源
关键词
Orthogonally additive operator; atomic operator; disjointness preserving operator; nonlinear superposition operator; Boolean homomorphism; vector lattice; order ideal; Primary 46B99; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new class of operators on vector lattices. We say that a linear or nonlinear operator T from a vector lattice E to a vector lattice F is atomic if there exists a Boolean homomorphism Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} from the Boolean algebra B(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {B}}(E)$$\end{document} of all order projections on E to B(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {B}}(F)$$\end{document} such that Tπ=Φ(π)T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\pi =\Phi (\pi )T$$\end{document} for every order projection π∈B(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \in {\mathfrak {B}}(E)$$\end{document}. We show that the set of all atomic operators defined on a vector lattice E with the principal projection property and taking values in a Dedekind complete vector lattice F is a band in the vector lattice of all regular orthogonally additive operators from E to F. We give the formula for the order projection onto this band, and we obtain an analytic representation for atomic operators between spaces of measurable functions. Finally, we consider the procedure of the extension of an atomic map from a lateral ideal to the whole space.
引用
收藏
相关论文
共 50 条