In this paper, we introduce a new class of operators on vector lattices. We say that a linear or nonlinear operator T from a vector lattice E to a vector lattice F is atomic if there exists a Boolean homomorphism Φ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Phi $$\end{document} from the Boolean algebra B(E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak {B}}(E)$$\end{document} of all order projections on E to B(F)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak {B}}(F)$$\end{document} such that Tπ=Φ(π)T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T\pi =\Phi (\pi )T$$\end{document} for every order projection π∈B(E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi \in {\mathfrak {B}}(E)$$\end{document}. We show that the set of all atomic operators defined on a vector lattice E with the principal projection property and taking values in a Dedekind complete vector lattice F is a band in the vector lattice of all regular orthogonally additive operators from E to F. We give the formula for the order projection onto this band, and we obtain an analytic representation for atomic operators between spaces of measurable functions. Finally, we consider the procedure of the extension of an atomic map from a lateral ideal to the whole space.
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Gan, Aiping
Guo, Li
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Guo, Li
Wang, Shoufeng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Wang, Shoufeng
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS,
2023,
40
(01):
: 63
-
86
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Gan, Aiping
Guo, Li
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China