Partition inequalities;
Partitions with bounded differences between largest and smallest parts;
Non-negative ;
-series expansions;
Injective maps;
-Binomial theorem;
Heine transformations;
Jackson transformation;
05A15;
05A17;
05A19;
05A20;
11B65;
11P81;
11P84;
33D15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for L≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L\ge 1$$\end{document}, the number of partitions with l-s≤L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l-s \le L$$\end{document} and s=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s=1$$\end{document} is greater than the number of partitions with l-s≤L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l-s\le L$$\end{document} and s>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s>1$$\end{document}. Here l and s are the largest part and the smallest part of the partition, respectively.