Partition inequalities;
Partitions with bounded differences between largest and smallest parts;
Non-negative ;
-series expansions;
Injective maps;
-Binomial theorem;
Heine transformations;
Jackson transformation;
05A15;
05A17;
05A19;
05A20;
11B65;
11P81;
11P84;
33D15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for L≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L\ge 1$$\end{document}, the number of partitions with l-s≤L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l-s \le L$$\end{document} and s=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s=1$$\end{document} is greater than the number of partitions with l-s≤L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l-s\le L$$\end{document} and s>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s>1$$\end{document}. Here l and s are the largest part and the smallest part of the partition, respectively.
机构:
Univ Florida, Dept Math, 358 Little Hall, Gainesville, FL 32611 USAUniv Florida, Dept Math, 358 Little Hall, Gainesville, FL 32611 USA
Berkovich, Alexander
Uncu, Ali Kemal
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenbergerstr 69, A-4040 Linz, AustriaUniv Florida, Dept Math, 358 Little Hall, Gainesville, FL 32611 USA