A general and flexible method for signal extraction from single-cell RNA-seq data

被引:0
|
作者
Davide Risso
Fanny Perraudeau
Svetlana Gribkova
Sandrine Dudoit
Jean-Philippe Vert
机构
[1] Weill Cornell Medicine,Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research
[2] University of California,Division of Biostatistics, School of Public Health
[3] Université Paris Diderot,Laboratoire de Probabilités et Modèles Aléatoires
[4] University of California,Department of Statistics
[5] PSL Research University,CBIO
[6] Institut Curie,Centre for Computational Biology, MINES ParisTech
[7] INSERM U900,Department of Mathematics and Applications
[8] Ecole Normale Supérieure,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell RNA-sequencing (scRNA-seq) is a powerful high-throughput technique that enables researchers to measure genome-wide transcription levels at the resolution of single cells. Because of the low amount of RNA present in a single cell, some genes may fail to be detected even though they are expressed; these genes are usually referred to as dropouts. Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE), which leads to low-dimensional representations of the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simulated and real data, that the model and its associated estimation procedure are able to give a more stable and accurate low-dimensional representation of the data than principal component analysis (PCA) and zero-inflated factor analysis (ZIFA), without the need for a preliminary normalization step.
引用
收藏
相关论文
共 50 条
  • [31] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [32] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [33] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [34] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [35] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [36] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [37] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [38] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [39] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    Nature Methods, 2017, 14 : 584 - 586
  • [40] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593