On the ergodic theory of free group actions by real-analytic circle diffeomorphisms

被引:0
|
作者
Bertrand Deroin
Victor Kleptsyn
Andrés Navas
机构
[1] Université Cergy-Pontoise,CNRS and Département de Mathématiques AGM
[2] CNRS and Institut de Recherche Mathématique de Rennes (UMR 6625),undefined
[3] University of Rennes 1,undefined
[4] Universidad de Santiago de Chile,undefined
来源
Inventiones mathematicae | 2018年 / 212卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider finitely generated groups of real-analytic circle diffeomorphisms. We show that if such a group admits an exceptional minimal set (i.e., a minimal invariant Cantor set), then its Lebesgue measure is zero; moreover, there are only finitely many orbits of connected components of its complement. For the case of minimal actions, we show that if the underlying group is (algebraically) free, then the action is ergodic with respect to the Lebesgue measure. This provides first answers to questions due to É. Ghys, G. Hector and D. Sullivan.
引用
收藏
页码:731 / 779
页数:48
相关论文
共 47 条