On the ergodic theory of free group actions by real-analytic circle diffeomorphisms

被引:0
|
作者
Bertrand Deroin
Victor Kleptsyn
Andrés Navas
机构
[1] Université Cergy-Pontoise,CNRS and Département de Mathématiques AGM
[2] CNRS and Institut de Recherche Mathématique de Rennes (UMR 6625),undefined
[3] University of Rennes 1,undefined
[4] Universidad de Santiago de Chile,undefined
来源
Inventiones mathematicae | 2018年 / 212卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider finitely generated groups of real-analytic circle diffeomorphisms. We show that if such a group admits an exceptional minimal set (i.e., a minimal invariant Cantor set), then its Lebesgue measure is zero; moreover, there are only finitely many orbits of connected components of its complement. For the case of minimal actions, we show that if the underlying group is (algebraically) free, then the action is ergodic with respect to the Lebesgue measure. This provides first answers to questions due to É. Ghys, G. Hector and D. Sullivan.
引用
收藏
页码:731 / 779
页数:48
相关论文
共 47 条
  • [1] On the ergodic theory of free group actions by real-analytic circle diffeomorphisms
    Deroin, Bertrand
    Kleptsyn, Victor
    Navas, Andres
    INVENTIONES MATHEMATICAE, 2018, 212 (03) : 731 - 779
  • [2] Groups of real-analytic diffeomorphisms of the circle
    Farb, B
    Shalen, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 835 - 844
  • [3] Real-analytic actions of lattices
    Farb, B
    Shalen, P
    INVENTIONES MATHEMATICAE, 1999, 135 (02) : 273 - 296
  • [4] Real-analytic actions of lattices
    Benson Farb
    Peter Shalen
    Inventiones mathematicae, 1999, 135 : 273 - 296
  • [5] Ping-pong partitions and locally discrete groups of real-analytic circle diffeomorphisms, II: Applications
    Alvarez, Sebastien
    Barrientos, Pablo G.
    Filimonov, Dmitry
    Kleptsyn, Victor
    Malicet, Dominique
    Coton, Carlos Menino
    Triestino, Michele
    COMMENTARII MATHEMATICI HELVETICI, 2023, 98 (04) : 643 - 691
  • [6] Ping-pong partitions and locally discrete groups of real-analytic circle diffeomorphisms, I: Construction
    Alonso, Juan
    Alvarez, Sebastien
    Malicet, Dominique
    Coton, Carlos Menino
    Triestino, Michele
    JOURNAL OF COMBINATORIAL ALGEBRA, 2024, 8 (1-2) : 57 - 109
  • [7] ON THE GROUP OF REAL ANALYTIC DIFFEOMORPHISMS
    Tsuboi, Takashi
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (04): : 601 - 651
  • [8] The Lie group of real analytic diffeomorphisms is not real analytic
    Dahmen, Rafael
    Schmeding, Alexander
    STUDIA MATHEMATICA, 2015, 229 (02) : 141 - 172
  • [9] Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric
    Kunde, Philipp
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1547 - 1569