Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces

被引:0
|
作者
Ewa Tyszkowska
机构
[1] Gdańsk University,Institute of Mathematics
来源
关键词
Riemann surface; Symmetry of a Riemann surface; Asymmetric Riemann surface; Pseudo-symmetric Riemann surface; Fuchsian groups; NEC groups; Primary 30F99; Secondary 14H37; 20F;
D O I
暂无
中图分类号
学科分类号
摘要
The category of smooth, irreducible, projective, complex algebraic curves is equivalent to the category of compact Riemann surfaces. We study automorphism groups of Riemann surfaces which are equivalent to complex algebraic curves with real moduli. A complex algebraic curve C has real moduli when the corresponding surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} admits an anti-conformal automorphism. If no such an automorphism is an involution (symmetry), then the surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} is called pseudo-real and the curve C is isomorphic to its conjugate, but is not definable over reals. Otherwise, the surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} is called symmetric and the curve C is real.
引用
收藏
相关论文
共 50 条