Rational Minimax Iterations for Computing the Matrix pth Root

被引:0
|
作者
Evan S. Gawlik
机构
[1] University of Hawaii at Manoa,Department of Mathematics
来源
关键词
Matrix root; Matrix power; Rational approximation; Minimax; Uniform approximation; Matrix iteration; Chebyshev approximation; Padé approximation; Newton iteration; Zolotarev; 65F30; 65F60; 41A20; 49K35;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper by the author, a family of iterations for computing the matrix square root was constructed by exploiting a recursion obeyed by Zolotarev’s rational minimax approximants of the function z1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^{1/2}$$\end{document}. The present paper generalizes this construction by deriving rational minimax iterations for the matrix pth root, where p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 2$$\end{document} is an integer. The analysis of these iterations is considerably different from the case p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}, owing to the fact that when p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}, rational minimax approximants of the function z1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^{1/p}$$\end{document} do not obey a recursion. Nevertheless, we show that several of the salient features of the Zolotarev iterations for the matrix square root, including equioscillatory error, order of convergence, and stability, carry over to the case p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. A key role in the analysis is played by the asymptotic behavior of rational minimax approximants on short intervals. Numerical examples are presented to illustrate the predictions of the theory.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 50 条
  • [31] Real Polynomial Root-Finding by Means of Matrix and Polynomial Iterations
    Pan, Victor Y.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2014, 2014, 8660 : 335 - 349
  • [32] A note on computing the matrix square root
    Iannazzo, B
    CALCOLO, 2003, 40 (04) : 273 - 283
  • [33] A note on computing the matrix square root
    B. Iannazzo
    CALCOLO, 2003, 40 : 273 - 283
  • [34] Using Approximate Computing for the Calculation of Inverse Matrix pth Roots
    Lass, Michael
    Kuhne, Thomas D.
    Plessl, Christian
    IEEE EMBEDDED SYSTEMS LETTERS, 2018, 10 (02) : 33 - 36
  • [35] Computing generalized inverses of a rational matrix and applications
    Stanimirović P.S.
    Karampetakis N.P.
    Tasić M.B.
    J. Appl. Math. Comp., 2007, 1-2 (81-94): : 81 - 94
  • [36] COMPUTATION OF THE MATRIX PTH ROOT AND ITS FRECHET DERIVATIVE BY INTEGRALS
    Cardoso, Joao R.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 414 - 436
  • [37] On explicit formulas of the principal matrix pth root by polynomial decompositions
    Abderraman Marrero, J.
    Ben Taher, R.
    El Khatabi, Y.
    Rachidi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 435 - 443
  • [38] A residual recurrence for Halley's method for the matrix pth root
    Lin, Minghua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2928 - 2930
  • [39] ITERATIONS CONVERGING TO A ROOT
    VANHAMME, L
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (03): : 211 - 211
  • [40] RANDOM ITERATIONS OF RATIONAL FUNCTIONS
    FORNAESS, JE
    SIBONY, N
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 687 - 708