Large-Time Behavior for a Fully Nonlocal Heat Equation

被引:0
|
作者
Carmen Cortázar
Fernando Quirós
Noemí Wolanski
机构
[1] Pontificia Universidad Católica de Chile,Departamento de Matemática
[2] Universidad Autónoma de Madrid,Departamento de Matemáticas
[3] Instituto de Ciencias Matemáticas ICMAT (CSIC-UAM-UCM-UC3M),IMAS
[4] Ciudad Universitaria,UBA
来源
关键词
Fully nonlocal heat equation; Caputo derivative; Fractional Laplacian; Asymptotic behavior; 35B40; 35R11; 35R09; 45K05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the large-time behavior in all Lp norms and in different space-time scales of solutions to a nonlocal heat equation in ℝN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{N}$\end{document} involving a Caputo α-time derivative and a power of the Laplacian (−Δ)s, s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in Lp. The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.
引用
收藏
页码:831 / 844
页数:13
相关论文
共 50 条