Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations

被引:0
|
作者
Faustino Sánchez-Garduño
Philip K. Maini
机构
[1] Centre for Mathematical Biology,
[2] Mathematical Institute,undefined
[3] University of Oxford,undefined
[4] 24-29 St. Giles’,undefined
[5] Oxford OX1 3LB,undefined
[6] UK,undefined
[7] Departamento de Matemáticas,undefined
[8] Facultad de Ciencias,undefined
[9] UNAM,undefined
[10] Circuito Exterior,undefined
[11] C.U.,undefined
[12] México 04510,undefined
[13] D.F.,undefined
[14] Mexico,undefined
来源
关键词
Key words: Sharp fronts; Degenerate diffusion; Hamiltonian; Bifurcation of heteroclinic trajectories;
D O I
暂无
中图分类号
学科分类号
摘要
 In this paper we study the existence of one-dimensional travelling wave solutions u(x, t)=φ(x−ct) for the non-linear degenerate (at u=0) reaction-diffusion equation ut=[D(u)ux]x+g(u) where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing the Allee effect. We use a dynamical systems approach to prove: 1. the global bifurcation of a heteroclinic cycle (two monotone stationary front solutions), for c=0, 2. The existence of a unique value c*>0 of c for which φ(x−c*t) is a travelling wave solution of sharp type and 3. A continuum of monotone and oscillatory fronts for c≠c*. We present some numerical simulations of the phase portrait in travelling wave coordinates and on the full partial differential equation.
引用
收藏
页码:713 / 728
页数:15
相关论文
共 50 条