Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer

被引:1
|
作者
Bo-Sung Kwon
Rae-Jun Park
Kyung-Bin Song
机构
[1] Soongsil University,Department of Electrical Engineering
关键词
Short-term load forecasting; Deep neural networks; Long short-term memory;
D O I
暂无
中图分类号
学科分类号
摘要
Short-term load forecasting (STLF) is essential for power system operation. STLF based on deep neural network using LSTM layer is proposed. In order to apply the forecasting method to STLF, the input features are separated into historical and prediction data. Historical data are input to long short-term memory (LSTM) layer to model the relationships between past observed data. The outputs of the LSTM layer are incorporated with outputs of fully-connected layer in which prediction data, for instance weather information for forecasting day, are input. The optimal parameters of the proposed forecasting method are selected following several experiment. The proposed method is expected to contribute to stable power system operation by providing a precise load forecasting.
引用
收藏
页码:1501 / 1509
页数:8
相关论文
共 50 条
  • [21] Short Term Power Load Forecasting Using Deep Neural Networks
    Din, Ghulam Mohi Ud
    Marnerides, Angelos K.
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016, : 594 - 598
  • [22] Short-term load forecasting based on the neural networks with load characteristics distilling
    Ding, Jianyong
    Liu, Yun
    Gaodianya Jishu/High Voltage Engineering, 2004, 30 (12):
  • [23] Short-Term Load Forecasting Model Based on Deep Neural Network
    Xue Hui
    Wang Qun
    Li Yao
    Zhang Yingbin
    Shi Lei
    Zhang Zhisheng
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 589 - 591
  • [24] Residential Short-Term Load Forecasting Using Convolutional Neural Networks
    Voss, Marcus
    Bender-Saebelkampf, Christian
    Albayrak, Sahin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [25] Enhanced Short-Term Load Forecasting Using Artificial Neural Networks
    Arvanitidis, Athanasios Ioannis
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Laitsos, Vasileios M.
    Tsoukalas, Lefteri H.
    ENERGIES, 2021, 14 (22)
  • [26] Improved short-term load forecasting using bagged neural networks
    Khwaja, A. S.
    Naeem, M.
    Anpalagan, A.
    Venetsanopoulos, A.
    Venkatesh, B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 125 : 109 - 115
  • [27] Short-Term Load Forecasting With Deep Residual Networks
    Chen, Kunjin
    Chen, Kunlong
    Wang, Qin
    He, Ziyu
    Hu, Jun
    He, Jinliang
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 3943 - 3952
  • [28] Very short-term load forecasting using artificial neural networks
    Charytoniuk, W
    Chen, MS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 263 - 268
  • [29] Neural networks application in short-term load forecasting
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2021, 83 (02): : 231 - 240
  • [30] NEURAL NETWORKS APPLICATION IN SHORT-TERM LOAD FORECASTING
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (02): : 231 - 240