Folding in Two-Dimensional Hydrodynamic Turbulence

被引:0
|
作者
E. A. Kuznetsov
E. V. Sereshchenko
机构
[1] Russian Academy of Sciences,Lebedev Physical Institute
[2] Russian Academy of Sciences,Landau Institute for Theoretical Physics
[3] Novosibirsk State University,Khristianovich Institute of Theoretical and Applied Mechanics
[4] Far-Eastern Federal University,undefined
[5] Siberian Branch,undefined
[6] Russian Academy of Sciences,undefined
来源
JETP Letters | 2019年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The vorticity rotor field B = curlω (divorticity) for freely decaying two-dimensional hydrodynamic turbulence due to a tendency to breaking is concentrated near the lines corresponding to the position of the vorticity quasi-shocks. The maximum value of the divorticity Bmax at the stage of quasi-shocks formation increases exponentially in time, while the thickness ℓ(t) of the maximum area in the transverse direction to the vector B decreases in time also exponentially. It is numerically shown that Bmax(t) depends on the thickness according to the power law Bmax(t) ∼ ℓ−α(t), where α = 2/3. This behavior indicates in favor of folding for the divergence-free vector field of the divorticity.
引用
收藏
页码:239 / 242
页数:3
相关论文
共 50 条
  • [21] Two-dimensional gyrokinetic turbulence
    Plunk, G. G.
    Cowley, S. C.
    Schekochihin, A. A.
    Tatsuno, T.
    JOURNAL OF FLUID MECHANICS, 2010, 664 : 407 - 435
  • [22] Two-dimensional turbulence on a sphere
    Lindborg, Erik
    Nordmark, Arne
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [23] Extensivity of two-dimensional turbulence
    Tran, CV
    Shepherd, TG
    Cho, HR
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 192 (3-4) : 187 - 195
  • [24] Two-dimensional elastic turbulence
    Berti, S.
    Bistagnino, A.
    Boffetta, G.
    Celani, A.
    Musacchio, S.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [25] Two-dimensional convective turbulence
    Gruzinov, AV
    Kukharkin, N
    Sudan, RN
    PHYSICAL REVIEW LETTERS, 1996, 76 (08) : 1260 - 1263
  • [26] Topology of two-dimensional turbulence
    Daniel, WB
    Rutgers, MA
    PHYSICAL REVIEW LETTERS, 2002, 89 (13)
  • [27] TWO-DIMENSIONAL TURBULENCE - INTRODUCTION
    LESIEUR, M
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, : 5 - 20
  • [28] On two-dimensional magnetohydrodynamic turbulence
    Biskamp, D
    Schwarz, E
    PHYSICS OF PLASMAS, 2001, 8 (07) : 3282 - 3292
  • [29] Non-axisymmetric hydrodynamic instability and transition to turbulence in two-dimensional accretion discs
    Godon, P
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 311 (3-5): : 271 - 278
  • [30] AN EXACT GAUSSIAN SOLUTION FOR THE TWO-DIMENSIONAL IDEAL INCOMPRESSIBLE MAGNETO-HYDRODYNAMIC TURBULENCE
    DOI, M
    KAMBE, R
    IMAMURA, T
    TANIUTI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (03) : 1154 - 1156