Perverse schobers on Riemann surfaces: constructions and examples

被引:0
|
作者
Will Donovan
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
来源
关键词
Perverse sheaves; Perverse schobers; Derived categories; Riemann surfaces; Geometric invariant theory; Flops; Mirror symmetry; 14F05; 14E05; 14J33; 14L24; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
This note studies perverse sheaves of categories, or schobers, on Riemann surfaces, following ideas of Kapranov and Schechtman (Perverse schobers, arXiv:1411.2772, 2014). For certain wall crossings in geometric invariant theory, we construct a schober on the complex plane, singular at each imaginary integer. We use this to obtain schobers for standard flops: in the threefold case, we relate these to a further schober on a partial compactification of a stringy Kähler moduli space, and suggest an application to mirror symmetry.
引用
收藏
页码:771 / 797
页数:26
相关论文
共 50 条
  • [2] Ginzburg algebras of triangulated surfaces and perverse schobers
    Christ, Merlin
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [3] Perverse schobers and Orlov equivalences
    Naoki Koseki
    Genki Ouchi
    European Journal of Mathematics, 2023, 9
  • [4] Perverse schobers and GKZ systems
    Spenko, Spela
    Van Den Bergh, Michel
    ADVANCES IN MATHEMATICS, 2022, 402
  • [5] Perverse schobers and Orlov equivalences
    Koseki, Naoki
    Ouchi, Genki
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [6] Perverse schobers and birational geometry
    Alexey Bondal
    Mikhail Kapranov
    Vadim Schechtman
    Selecta Mathematica, 2018, 24 : 85 - 143
  • [7] Perverse schobers and birational geometry
    Bondal, Alexey
    Kapranov, Mikhail
    Schechtman, Vadim
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (01): : 85 - 143
  • [8] Perverse Schobers and Wall Crossing
    Donovan, W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5777 - 5810
  • [9] Stokes-Perverse Sheaves on Riemann Surfaces
    Sabbah, Claude
    INTRODUCTION TO STOKES STRUCTURES, 2013, 2060 : 51 - 64
  • [10] Perverse sheaves on Riemann surfaces as Milnor sheaves
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    Soibelman, Yan
    FORUM OF MATHEMATICS SIGMA, 2023, 11