Perverse schobers and GKZ systems

被引:1
|
作者
Spenko, Spela [1 ]
Van Den Bergh, Michel [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine,CP 213,Bld Triomphe, B-1050 Brussels, Belgium
[2] Univ Hasselt, Vakgroep Wiskunde, Univ Campus, B-3590 Diepenbeek, Belgium
关键词
Perverse sheaves; Categorification; Geometric invariant theory; HYPERGEOMETRIC-FUNCTIONS; INTEGRALS; MONODROMY;
D O I
10.1016/j.aim.2022.108307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Perverse schobers are categorifications of perverse sheaves. In prior work we constructed a perverse schober on a partial compactification of the stringy Kahler moduli space (SKMS) associated by Halpern-Leistner and Sam to a quasi symmetric representation of a reductive group. When the group is a torus the SKMS corresponds to the complement of the GKZ discriminant locus (which is a hyperplane arrangement in the quasi-symmetric case shown by Kite). We show here that a suitable variation of the perverse schober we constructed provides a categorification of the associated GKZ hypergeometric system in the case of non resonant parameters. As an intermediate result we give a description of the monodromy of such "quasi-symmetric " GKZ hypergeometric systems. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:60
相关论文
共 50 条
  • [1] Perverse schobers and Orlov equivalences
    Naoki Koseki
    Genki Ouchi
    European Journal of Mathematics, 2023, 9
  • [2] Perverse schobers and Orlov equivalences
    Koseki, Naoki
    Ouchi, Genki
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [3] Perverse schobers and birational geometry
    Alexey Bondal
    Mikhail Kapranov
    Vadim Schechtman
    Selecta Mathematica, 2018, 24 : 85 - 143
  • [4] Perverse schobers and birational geometry
    Bondal, Alexey
    Kapranov, Mikhail
    Schechtman, Vadim
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (01): : 85 - 143
  • [5] Perverse Schobers and Wall Crossing
    Donovan, W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5777 - 5810
  • [6] Ginzburg algebras of triangulated surfaces and perverse schobers
    Christ, Merlin
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [8] Perverse schobers on Riemann surfaces: constructions and examples
    Will Donovan
    European Journal of Mathematics, 2019, 5 : 771 - 797
  • [9] Mirror Symmetry for Perverse Schobers from Birational Geometry
    W. Donovan
    T. Kuwagaki
    Communications in Mathematical Physics, 2021, 381 : 453 - 490
  • [10] Mirror Symmetry for Perverse Schobers from Birational Geometry
    Donovan, W.
    Kuwagaki, T.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (02) : 453 - 490