Non-Abelian Vortices in Supersymmetric Gauge Field Theory via Direct Methods

被引:0
|
作者
Elliott H. Lieb
Yisong Yang
机构
[1] Princeton University,Departments of Physics and Mathematics
[2] Polytechnic Institute of New York University,Department of Mathematics
来源
关键词
Vortex; High Energy Phys; ABJM Theory; Periodic Domain; Nonabelian Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
Vortices in supersymmetric gauge field theory are important constructs in a basic conceptual phenomenon commonly referred to as the dual Meissner effect which is responsible for color confinement. Based on a direct minimization approach, we present a series of sharp existence and uniqueness theorems for the solutions of some non-Abelian vortex equations governing color-charged multiply distributed flux tubes, which provide an essential mechanism for linear confinement. Over a doubly periodic domain, existence results are obtained under explicitly stated necessary and sufficient conditions that relate the size of the domain, the vortex numbers, and the underlying physical coupling parameters of the models. Over the full plane, existence results are valid for arbitrary vortex numbers and coupling parameters. In all cases, solutions are unique.
引用
收藏
页码:445 / 478
页数:33
相关论文
共 50 条
  • [1] Non-Abelian Vortices in Supersymmetric Gauge Field Theory via Direct Methods
    Lieb, Elliott H.
    Yang, Yisong
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 313 (02) : 445 - 478
  • [2] Non-Abelian Multiple Vortices in Supersymmetric Field Theory
    Lin, Chang-Shou
    Yang, Yisong
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) : 433 - 457
  • [3] Non-Abelian Multiple Vortices in Supersymmetric Field Theory
    Chang-Shou Lin
    Yisong Yang
    Communications in Mathematical Physics, 2011, 304 : 433 - 457
  • [4] Walls and vortices in supersymmetric non-Abelian gauge theories
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Sakai, N
    PASCOS 2004: THEMES IN UNIFICATION,THE PRAN NATH FESTSCHRIFT, 2005, : 229 - 238
  • [5] Non-abelian vortices in N=1* gauge theory
    Markov, V
    Marshakov, A
    Yung, A
    NUCLEAR PHYSICS B, 2005, 709 (1-2) : 267 - 295
  • [6] EFFECTIVE LAGRANGIAN FOR A SUPERSYMMETRIC NON-ABELIAN GAUGE-THEORY
    ROY, P
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 30 (01): : 79 - 81
  • [7] Electrodynamics as a non-Abelian gauge field theory
    Anon
    Journal of New Energy, 1999, 4 (03): : 97 - 106
  • [8] A theory of non-abelian tensor gauge field with non-abelian gauge symmetry G x G
    Chu, Chong-Sun
    NUCLEAR PHYSICS B, 2013, 866 (01) : 43 - 57
  • [9] A TOPOLOGICAL FIELD-THEORY FOR NON-ABELIAN VORTICES
    CUGLIANDOLO, LF
    LOZANO, G
    SCHAPOSNIK, FA
    PHYSICS LETTERS B, 1990, 234 (1-2) : 52 - 56
  • [10] SUPERSYMMETRY WARD IDENTITY FOR THE SUPERSYMMETRIC NON-ABELIAN GAUGE-THEORY
    MAJUMDAR, P
    POGGIO, EC
    SCHNITZER, HJ
    PHYSICAL REVIEW D, 1980, 21 (08): : 2203 - 2212