The exponential convergence for a delay differential neoclassical growth model with variable delay

被引:0
|
作者
Wentao Wang
机构
[1] Jiaxing University,College of Mathematics, Physics and Information Engineering
来源
Nonlinear Dynamics | 2016年 / 86卷
关键词
Neoclassical growth model; Equilibrium; Delay; Exponential convergence;
D O I
暂无
中图分类号
学科分类号
摘要
The paper investigates the delay differential neoclassical growth model x′(t)=βxγ(t-τ(t))e-δx(t-τ(t))-αx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'(t)=\beta x^\gamma (t-\tau (t))e^{-\delta x(t-\tau (t))}-\alpha x(t)$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document} and variable delay. We discuss the existence and positivity of solutions and discover the exponential convergence of positive equilibriums. Moreover, we give several examples with numerical simulations to demonstrate theoretical results.
引用
收藏
页码:1875 / 1883
页数:8
相关论文
共 50 条
  • [21] A delay differential equation model for tumor growth
    Minaya Villasana
    Ami Radunskaya
    Journal of Mathematical Biology, 2003, 47 : 270 - 294
  • [22] A delay differential equation model for tumor growth
    Villasana, M
    Radunskaya, A
    JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 47 (03) : 270 - 294
  • [23] EXPONENTIAL GROWTH RATE FOR A SINGULAR LINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATION
    Scheutzow, Michael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (06): : 1683 - 1696
  • [24] Noise suppresses exponential growth for neutral stochastic differential delay equations
    Zhou, Shaobo
    Xue, Minggao
    Hu, Shigeng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (05): : 853 - 864
  • [25] INTEGRAL-INEQUALITIES AND EXPONENTIAL CONVERGENCE OF SOLUTIONS OF DIFFERENTIAL-EQUATIONS WITH BOUNDED DELAY
    ATKINSON, FV
    HADDOCK, JR
    STAFFANS, OJ
    LECTURE NOTES IN MATHEMATICS, 1982, 964 : 56 - 68
  • [26] On delay partial differential and delay differential thermal models for variable pipe flow
    Wurm, Jens
    Bachler, Simon
    Woittennek, Frank
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 152
  • [27] New findings on exponential convergence of a Nicholson’s blowflies model with proportional delay
    Changjin Xu
    Peiluan Li
    Shuai Yuan
    Advances in Difference Equations, 2019
  • [28] New findings on exponential convergence of a Nicholson's blowflies model with proportional delay
    Xu, Changjin
    Li, Peiluan
    Yuan, Shuai
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [29] An exponential convergence estimate for analog neural networks with delay
    Chu, TG
    PHYSICS LETTERS A, 2001, 283 (1-2) : 113 - 118
  • [30] PULLBACK EXPONENTIAL ATTRACTORS FOR DIFFERENTIAL EQUATIONS WITH DELAY
    Netchaoui, Sana
    Hammami, Mohamed Ali
    Caraballo, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (04): : 1345 - 1358