The exponential convergence for a delay differential neoclassical growth model with variable delay

被引:0
|
作者
Wentao Wang
机构
[1] Jiaxing University,College of Mathematics, Physics and Information Engineering
来源
Nonlinear Dynamics | 2016年 / 86卷
关键词
Neoclassical growth model; Equilibrium; Delay; Exponential convergence;
D O I
暂无
中图分类号
学科分类号
摘要
The paper investigates the delay differential neoclassical growth model x′(t)=βxγ(t-τ(t))e-δx(t-τ(t))-αx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'(t)=\beta x^\gamma (t-\tau (t))e^{-\delta x(t-\tau (t))}-\alpha x(t)$$\end{document} with γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document} and variable delay. We discuss the existence and positivity of solutions and discover the exponential convergence of positive equilibriums. Moreover, we give several examples with numerical simulations to demonstrate theoretical results.
引用
收藏
页码:1875 / 1883
页数:8
相关论文
共 50 条