Estimating the compressive strength of plastic concrete samples using machine learning algorithms

被引:0
|
作者
Alishvandi A. [1 ]
Karimi J. [1 ]
Damari S. [2 ]
Moayedi Far A. [1 ]
Setodeh Pour M. [3 ]
Ahmadi M. [1 ]
机构
[1] Rock Mechanics Division, School of Engineering, Tarbiat Modares University, Tehran
[2] Faculty of Statistics, Mathematics and Computer, Allameh Tabataba’i University, Tehran
[3] Civil Engineering Department, School of Engineering, Islamic Azad University, Larestan
关键词
Compressive strength; Machine learning algorithm; Plastic concrete; Regression;
D O I
10.1007/s42107-023-00857-1
中图分类号
学科分类号
摘要
Determining the mechanical properties of plastic concrete samples through experimental investigation is costly and time-consuming. This research used supervised machine learning (ML) techniques, including Decision Tree (DT), Random Forest (RF), Gradient Boost (GB), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM), and K-Nearest Neighborhood (KNN) for predicting the compressive strength of the plastic concrete samples considering different values of cement, water, water-to-cement ratio, bentonite, temperature, and sand. The models' performances are compared and evaluated using the correlation of coefficient (R 2) score, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). According to the results, the DT model was more effective in predicting with R 2 = 0.87. In addition, a sensitivity analysis was carried out to determine each parameter's contribution level in implementing models using the RF algorithm. Consequently, it was shown that ML techniques are valuable tools for predicting the mechanical properties of plastic concrete in a more time and cost-effective way compared to laboratory tests. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
页码:1503 / 1516
页数:13
相关论文
共 50 条
  • [31] Machine learning techniques to predict the compressive strength of concrete
    Silva, Priscila F. S.
    Moita, Gray Farias
    Arruda, Vanderci Fernandes
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2020, 36 (04): : 1 - 14
  • [32] Machine learning approaches for estimation of compressive strength of concrete
    Marijana Hadzima-Nyarko
    Emmanuel Karlo Nyarko
    Hongfang Lu
    Senlin Zhu
    The European Physical Journal Plus, 135
  • [33] Machine learning approaches for estimation of compressive strength of concrete
    Hadzima-Nyarko, Marijana
    Nyarko, Emmanuel Karlo
    Lu, Hongfang
    Zhu, Senlin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08):
  • [34] Estimating the Concrete Ultimate Strength Using a Hybridized Neural Machine Learning
    Zhang, Ziwei
    BUILDINGS, 2023, 13 (07)
  • [35] Super learner machine-learning algorithms for compressive strength prediction of high performance concrete
    Lee, Seunghye
    Ngoc-Hien Nguyen
    Karamanli, Armagan
    Lee, Jaehong
    Vo, Thuc P.
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2208 - 2228
  • [36] Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature
    Ahmad, Ayaz
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Farooq, Furqan
    Mehmood, Imran
    Nafees, Afnan
    MATERIALS, 2021, 14 (15)
  • [37] Accurate compressive strength prediction using machine learning algorithms and optimization techniques
    Lan W.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [38] Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models
    Alyami, Mana
    Nassar, Roz-Ud-Din
    Khan, Majid
    Hammad, Ahmed W. A.
    Alabduljabbar, Hisham
    Nawaz, R.
    Fawad, Muhammad
    Gamil, Yaser
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [39] Estimating the compressive strength of lightweight foamed concrete using different machine learning-based symbolic regression techniques
    Onyelowe, Kennedy C.
    Ebid, Ahmed M.
    Vinueza, Danilo Fernando Fernandez
    Brito, Nestor Augusto Estrada
    Velasco, Nancy
    Bunay, Jorge
    Muhodir, Sabih Hashim
    Imran, Hamza
    Hanandeh, Shadi
    FRONTIERS IN BUILT ENVIRONMENT, 2024, 10
  • [40] A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models
    Altunci, Yusuf Tahir
    BUILDINGS, 2024, 14 (12)