Classification of Finite Irreducible Conformal Modules over N = 2 Lie Conformal Superalgebras of Block Type

被引:0
|
作者
Chunguang Xia
机构
[1] China University of Mining and Technology,School of Mathematics
来源
关键词
Finite conformal module; Lie conformal superalgebra; = 2 conformal superalgebra; Composition factor; 17B10; 17B65; 17B68; 17B69;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the N = 2 Lie conformal superalgebras K(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frak {K}}(p)$\end{document} of Block type, and classify their finite irreducible conformal modules for any nonzero parameter p. In particular, we show that such a conformal module admits a nontrivial extension of a finite conformal module M over K2 if p = − 1 and M has rank (2 + 2), where K2 is an N = 2 conformal subalgebra of K(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frak {K}}(p)$\end{document}. As a byproduct, we obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal superalgebras k(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frak k}(n)$\end{document} for n ≥ 1. Composition factors of all the involved reducible conformal modules are also determined.
引用
收藏
页码:1731 / 1757
页数:26
相关论文
共 50 条
  • [31] IRREDUCIBLE QUASIFINITE MODULES OVER A CLASS OF LIE ALGEBRAS OF BLOCK TYPE
    Chen, Hongjia
    Guo, Xiangqian
    Zhao, Kaiming
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (05) : 817 - 827
  • [32] ] The Lie Conformal Algebra of a Block Type Lie Algebra
    Gao, Ming
    Xu, Ying
    Yue, Xiaoqing
    ALGEBRA COLLOQUIUM, 2015, 22 (03) : 367 - 382
  • [33] Automorphisms and twisted forms of the N=1, 2, 3 Lie conformal superalgebras
    Chang, Zhihua
    Pianzola, Arturo
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2011, 5 (04) : 751 - 777
  • [34] Finite conformal modules over N=2,3,4 superconformal algebras
    Cheng, SJ
    Lam, N
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (02) : 906 - 933
  • [35] Finite weight modules over twisted affine Lie superalgebras
    Yousofzadeh, Malihe
    JOURNAL OF ALGEBRA, 2020, 564 : 436 - 479
  • [36] Representations of simple finite Lie conformal superalgebras of type W and S -: art. no. 043513
    Boyallian, C
    Kac, VG
    Liberati, JI
    Rudakov, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
  • [37] Categories of finite dimensional weight modules over type I classical Lie superalgebras
    Zou, YM
    JOURNAL OF ALGEBRA, 1996, 180 (02) : 459 - 482
  • [38] CHARACTER FORMULAS FOR IRREDUCIBLE MODULES OF THE LIE-SUPERALGEBRAS SL(M/N)
    VANDERJEUGT, J
    HUGHES, JWB
    KING, RC
    THIERRYMIEG, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (09) : 2278 - 2304
  • [39] Structure of a class of Lie conformal algebras of Block type
    Wang, Wei
    Xia, Chunguang
    Liu, Li
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2014 - 2027
  • [40] Faithful Representations of Finite Type for Conformal Lie Algebras
    Kozlov, R. A.
    ALGEBRA AND LOGIC, 2023, 62 (03) : 272 - 276