Reduction of Quantum Systems with Arbitrary First Class Constraints and Hecke Algebras

被引:0
|
作者
Alexey Sevostyanov
机构
[1] Institute of Theoretical Physics,
[2] Uppsala University,undefined
[3] Box 803,undefined
[4] S-75108 Uppsala,undefined
[5] Sweden.¶E-mail: seva¶teorfys.uu.se,undefined
来源
关键词
Quantum System; Module Versus; Associative Algebra; Class Constraint; Cohomology Space;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a method for reduction of quantum systems with arbitrary first-class constraints. An appropriate mathematical setting for the problem is the homology of associative algebras. For every such algebra A and subalgebra B with augmentation ɛ there exists a cohomological complex which is a generalization of the BRST one. Its cohomology is an associative graded algebra Hk*(A,B) which we call the Hecke algebra of the triple (A,B,ɛ). It acts in the cohomology space H*(B,V) for every left A module V. In particular the zeroth graded component $Hk^{0}(A,B)$ acts in the space of B invariants of $V$ and provides the reduction of the quantum system.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [31] On the quantum Ruijs']jsenaars model, some quantum homogeneous spaces and Hecke algebras
    Iorgov, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 224 - 239
  • [32] Geometric methods in the representation theory of Hecke algebras and quantum groups
    Ginzburg, V
    REPRESENTATION THEORIES AND ALGEBRAIC GEOMETRY, 1998, 514 : 127 - 183
  • [33] Bost-Connes systems, Hecke algebras, and induction
    Laca, Marcelo
    Neshveyev, Sergey
    Trifkovic, Mak
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (02) : 525 - 546
  • [34] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-Jin
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 1987 - 2015
  • [35] CERTAIN GROUP DYNAMICAL SYSTEMS INDUCED BY HECKE ALGEBRAS
    Cho, Ilwoo
    OPUSCULA MATHEMATICA, 2016, 36 (03) : 337 - 373
  • [36] SYMMETRIC QUIVER HECKE ALGEBRAS AND R-MATRICES OF QUANTUM AFFINE ALGEBRAS, II
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (08) : 1549 - 1602
  • [37] TWISTED YANGIANS, TWISTED QUANTUM LOOP ALGEBRAS AND AFFINE HECKE ALGEBRAS OF TYPE BC
    Chen, Hongjia
    Guay, Nicolas
    Ma, Xiaoguang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2517 - 2574
  • [38] Correction to: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras
    Seok-Jin Kang
    Masaki Kashiwara
    Myungho Kim
    Inventiones mathematicae, 2019, 216 : 597 - 599
  • [39] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV
    Seok-Jin Kang
    Masaki Kashiwara
    Myungho Kim
    Se-Jin Oh
    Selecta Mathematica, 2016, 22 : 1987 - 2015
  • [40] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 420 - 444