Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement

被引:2
|
作者
Dongfang Zhao
Shulin Liu
Hongli Zhang
Xin Sun
Lu Wang
Yuan Wei
机构
[1] Shanghai University,School of Mechatronic Engineering and Automation
关键词
Fault diagnosis; Reciprocating compressor; Convolutional neural network; Attention mechanism; Signal rearrangement;
D O I
暂无
中图分类号
学科分类号
摘要
Reciprocating compressor is extensively used in petrochemical industry and other fields. However, due to the nonlinearity of the system, it is usually difficult for traditional methods to extract reliable fault features from its vibration signal and achieve satisfactory diagnostic accuracy under the condition of high intensity noise. In this paper, a novel fault recognition method for reciprocating compressor is proposed on the basis of signal rearrangement and attention mechanism assisted convolutional neural network. Firstly, to enhance the features of the raw signal without information loss and avoid artificial feature extraction, a novel signal rearrangement method, that can convert the raw data into 2-D format, is developed. The proposed signal rearrangement method can bring the data points into a straight line (45 degrees counterclockwise from the horizontal), which can reinforce the characteristics of the raw data and make it more intuitive. Besides, to enable the network to make adequate use of the characteristics of different channels and take global feature into consideration, the attention mechanism is introduced into the convolutional neural network classifier through the SE module of the SENet. The effectiveness of the proposed method is verified by experiments, and the experimental results show that, the diagnostic accuracy of the proposed method reaches 99.4%. In addition, even under strong noise, the method of this work can still maintain an accuracy of 90.2%. Compared with other typical methods, the method suggested in this work not only holds a higher recognition accuracy, but also a stronger ability of anti-noise.
引用
收藏
页码:7827 / 7840
页数:13
相关论文
共 50 条
  • [21] A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism
    Zhiqian Zhao
    Yinghou Jiao
    Xiang Zhang
    Journal of Signal Processing Systems, 2023, 95 : 965 - 977
  • [22] A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism
    Zhao, Zhiqian
    Jiao, Yinghou
    Zhang, Xiang
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (08): : 965 - 977
  • [23] An intelligent fault diagnosis framework for raw vibration signals: adaptive overlapping convolutional neural network
    Qian, Weiwei
    Li, Shunming
    Wang, Jinrui
    An, Zenghui
    Jiang, Xingxing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (09)
  • [24] Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network
    Chen, Zhuyun
    Zhong, Qi
    Huang, Ruyi
    Liao, Yixiao
    Li, Jipu
    Li, Weihua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (21): : 96 - 105
  • [25] Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network
    Zhang, Bo
    Zhou, Caicai
    Li, Wei
    Ji, Shengfei
    Li, Hengrui
    Tong, Zhe
    Ng, See-Kiong
    MATHEMATICS, 2022, 10 (21)
  • [26] An Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network
    Li, Chunhui
    Tang, Youfu
    Lei, Na
    Wang, Xu
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6160 - 6175
  • [27] Graph Convolutional Neural Network for Intelligent Fault Diagnosis of Machines via Knowledge Graph
    Mao, Zehui
    Wang, Huan
    Jiang, Bin
    Xu, Juan
    Guo, Huifeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7862 - 7870
  • [28] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020
  • [29] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [30] Bearing Fault Diagnosis based on Convolutional Neural Network learning of time-domain vibration signal imaging
    Ma, Liuhao
    Xu, Jian
    Yang, Qiang
    Li, Xun
    Lv, Qishen
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 659 - 664