GIS-based evaluation of landslide susceptibility using a novel hybrid computational intelligence model on different mapping units

被引:0
|
作者
Ting-yu Zhang
Zhong-an Mao
Tao Wang
机构
[1] Shaanxi Provincial Land Engineering Construction Group Land Survey Planning and Design Institute Co.,
[2] Ltd.,undefined
来源
关键词
Kernel logistic regression model; Landslide susceptibility; GIS; Fractal dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Landslide susceptibility mapping is significant for landslide prevention. Many approaches have been used for landslide susceptibility prediction, however, their performances are unstable. This study constructed a hybrid model, namely box counting dimension-based kernel logistic regression model, which uses fractal dimension calculated by box counting method as input data based on grid cells mapping unit and terrain mapping unit. The performance of this model was evaluated in the application in Zhidan County, Shaanxi Province, China. Firstly, a total of 221 landslides were identified and mapped, and 11 landslide predisposing factors were considered. Secondly, the landslide susceptibility maps (LSMs) of the study area were obtained by constructing the model on two different mapping units. Finally, the results were evaluated with five statistical indexes, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Accuracy. The statistical indexes of the model obtained on the terrain mapping unit were larger than those based on grid cells mapping unit. For training and validation datasets, the area under the receiver operating characteristic curve (AUC) of the model based on terrain mapping unit were 0.9374 and 0.9527, respectively, indicating that establishing this model on the terrain mapping unit was advantageous in the study area. The results show that the fractal dimension improves the prediction ability of the kernel logistic model. In addition, the terrain mapping unit is a more promising mapping unit in Loess areas.
引用
收藏
页码:2929 / 2941
页数:12
相关论文
共 50 条
  • [31] GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
    Chen, Xi
    Chen, Wei
    CATENA, 2021, 196
  • [32] GIS-based Landslide Susceptibility Mapping Using Infinite Slope Model for the New Site of Badong County, China
    Liu Bin
    Yin Kunlong
    DISASTER ADVANCES, 2012, 5 (04): : 1552 - 1557
  • [33] Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-Based Ensemble Model
    Arabameri, Alireza
    Tiefenbacher, John P.
    Blaschke, Thomas
    Pradhan, Biswajeet
    Bui, Dieu Tien
    REMOTE SENSING, 2020, 12 (05)
  • [34] Groundwater Potential Mapping Using GIS-Based Hybrid Artificial Intelligence Methods
    Phong, Tran Van
    Pham, Binh Thai
    Trinh, Phan Trong
    Ly, Hai-Bang
    Vu, Quoc Hung
    Ho, Lanh Si
    Le, Hiep Van
    Phong, Lai Hop
    Avand, Mohammadtaghi
    Prakash, Indra
    GROUNDWATER, 2021, 59 (05) : 745 - 760
  • [35] Landslide susceptibility mapping using GIS-based bivariate models in the Rif chain (northernmost Morocco)
    Es-Smairi, Abderrazzak
    El Moutchou, Brahim
    Touhami, Abdelouahed El Ouazani
    Namous, Mustapha
    Mir, Riyaz Ahmad
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15347 - 15377
  • [36] Performance Evaluation of GIS-Based Artificial Intelligence Approaches for Landslide Susceptibility Modeling and Spatial Patterns Analysis
    Lei, Xinxiang
    Chen, Wei
    Binh Thai Pham
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (07)
  • [37] GIS-Based Landslide Susceptibility Analyses: Case Studies at Different Scales
    Zhou, Wendy
    Minnick, Matthew D.
    Chen, Jian
    Garrett, Jordan
    Acikalin, Elif
    NATURAL HAZARDS REVIEW, 2021, 22 (03)
  • [38] Ubiquitous GIS-Based Forest Fire Susceptibility Mapping Using Artificial Intelligence Methods
    Razavi-Termeh, Seyed Vahid
    Sadeghi-Niaraki, Abolghasem
    Choi, Soo-Mi
    REMOTE SENSING, 2020, 12 (10)
  • [39] GIS-based evolution and comparisons of landslide susceptibility mapping of the East Sikkim Himalaya
    Gupta, Neha
    Pal, Sanjit Kumar
    Das, Josodhir
    ANNALS OF GIS, 2022, 28 (03) : 359 - 384
  • [40] GIS-based logistic regression method for landslide susceptibility mapping in regional scale
    Zhu L.
    Huang J.-F.
    J Zhejiang Univ: Sci, 2006, 12 (2007-2017): : 2007 - 2017