Convergence of orthogonal greedy algorithm with errors in projectors

被引:0
|
作者
Fedotov N.N. [1 ]
机构
[1] Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow
关键词
Greedy Algorithm; Computational Error; Greedy Expansion; Orthogonal Greedy Algorithm;
D O I
10.3103/S0027132213010075
中图分类号
学科分类号
摘要
A model of orthogonal greedy algorithm is proposed. This model allows one to consider computational errors and to study the stability of this algorithm with respect to errors in projections onto subspaces. A criterion for the convergence of orthogonal greedy expansion to the expanded element is given in terms of computational errors. © 2013 Allerton Press, Inc.
引用
收藏
页码:37 / 41
页数:4
相关论文
共 50 条
  • [31] Sharp sufficient condition for the convergence of greedy expansions with errors in coefficient computation
    Valiullin, Artur R.
    Valiullin, Albert R.
    Solodov, Alexei P.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 254 - 264
  • [32] Eigenvalues of functions of orthogonal projectors
    Baksalary, Oskar Maria
    Trenkler, Goetz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) : 2172 - 2186
  • [33] Fast implementation of orthogonal greedy algorithm for tight wavelet frames
    Petukhov, A
    SIGNAL PROCESSING, 2006, 86 (03) : 471 - 479
  • [34] Orthogonal Greedy MUSIC: An Empirical Algorithm for Joint Sparse Recovery
    Xinpeng Du
    Ruihua Liang
    Lizhi Cheng
    Fang Su
    Circuits, Systems, and Signal Processing, 2013, 32 : 3079 - 3091
  • [35] Analysis of T-Orthogonal greedy algorithm in noisy measurement
    Deep, Sunder
    Poumai, Khole Timothy
    Kaushik, S. K.
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [36] Almost Optimality of the Orthogonal Super Greedy Algorithm for μ-Coherent Dictionaries
    Shao, Chunfang
    Chang, Jincai
    Ye, Peixin
    Zhang, Wenhui
    Xing, Shuo
    AXIOMS, 2022, 11 (05)
  • [37] Orthogonal Greedy MUSIC: An Empirical Algorithm for Joint Sparse Recovery
    Du, Xinpeng
    Liang, Ruihua
    Cheng, Lizhi
    Su, Fang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (06) : 3079 - 3091
  • [38] Generalizations of a property of orthogonal projectors
    Baksalary, Jerzy K.
    Baksalary, Oskar Maria
    Kik, Paulina
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (01) : 1 - 8
  • [39] BONDING RULES FOR ORTHOGONAL PROJECTORS
    BERG, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (02): : 113 - 114
  • [40] Greedy Criterion in Orthogonal Greedy Learning
    Xu, Lin
    Lin, Shaobo
    Zeng, Jinshan
    Liu, Xia
    Fang, Yi
    Xu, Zongben
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (03) : 955 - 966