The periodic groups saturated by finitely many finite simple groups

被引:0
|
作者
D. V. Lytkina
L. R. Tukhvatullina
K. A. Filippov
机构
[1] Novosibirsk State University,
[2] Krasnoyarsk Agricultural State University,undefined
来源
关键词
saturation of a group by a set of groups; periodic group;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{M}$$ \end{document} the set whose elements are the simple 3-dimensional unitary groups U3(q) and the linear groups L3(q) over finite fields. We prove that every periodic group, saturated by the groups of a finite subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{M}$$ \end{document}, is finite.
引用
收藏
页码:317 / 321
页数:4
相关论文
共 50 条
  • [31] Periodic Groups Saturated with Finite Simple Groups of Types U3 and L3
    D. V. Lytkina
    A. A. Shlepkin
    Algebra and Logic, 2016, 55 : 289 - 294
  • [32] Periodic Groups Saturated with Finite Simple Symplectic Groups of Dimension 6 over Fields of Odd Characteristics
    D. V. Lytkina
    V. D. Mazurov
    Siberian Mathematical Journal, 2022, 63 : 1117 - 1120
  • [33] Groups with finitely many normalizers of non-periodic subgroups
    de Falco M.
    de Giovanni F.
    Musella C.
    Rendiconti del Circolo Matematico di Palermo, 2010, 59 (2) : 289 - 294
  • [34] GROUPS WITH FINITELY MANY AUTOMORPHISMS
    ALPERIN, JL
    PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 1 - &
  • [35] PERIODIC GROUPS, SATURATED BY WREATHED GROUPS
    Shlyopkin, A. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 56 - 64
  • [36] Algorithms determining finite simple images of finitely presented groups
    Martin R. Bridson
    David M. Evans
    Martin W. Liebeck
    Dan Segal
    Inventiones mathematicae, 2019, 218 : 623 - 648
  • [37] Algorithms determining finite simple images of finitely presented groups
    Bridson, Martin R.
    Evans, David M.
    Liebeck, Martin W.
    Segal, Dan
    INVENTIONES MATHEMATICAE, 2019, 218 (02) : 623 - 648
  • [38] Conjugate biprimitive finite groups saturated with finite simple subgroups
    Shlyopkin A.K.
    Algebra and Logic, 1998, 37 (2) : 127 - 138
  • [39] Locally finite groups with finitely many isomorphism classes of derived subgroups
    Longobardi, Patrizia
    Maj, Mercede
    Robinson, Derek J. S.
    JOURNAL OF ALGEBRA, 2013, 393 : 102 - 119
  • [40] On groups factorized by finitely many subgroups
    Landolfi T.
    Ukrainian Mathematical Journal, 1999, 51 (3) : 455 - 457