Using categorical techniques we obtain some results on localization and colocalization theory in Grothendieck categories with a set of small projective generators. In particular, we give a sufficient condition for such category to be semiartinian. For semiartinian Grothendieck categories where every simple object has a projective cover, we obtain that every localizing subcategory is a TTF-class. In addition, some applications to semiperfect categories are obtained.
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Zhu, Bin
Zhuang, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Union Univ, Inst Math & Phys, Beijing 100101, Peoples R China
Beijing Union Univ, Inst Fundamental & Interdisciplinary Sci, Beijing 100101, Peoples R ChinaTsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
机构:
United Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab EmiratesUnited Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab Emirates
Daus, L.
Nastasescu, C.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Simion Stoilow Inst Math, Bucharest, RomaniaUnited Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab Emirates
Nastasescu, C.
Salim, M.
论文数: 0引用数: 0
h-index: 0
机构:
United Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab EmiratesUnited Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab Emirates
机构:
Romanian Acad, Inst Math Simion Stoilow, Res Unit 5, RO-014700 Bucharest, RomaniaRomanian Acad, Inst Math Simion Stoilow, Res Unit 5, RO-014700 Bucharest, Romania