Benford’s Distribution in Extrasolar World: Do the Exoplanets Follow Benford’s Distribution?

被引:0
|
作者
ABHISHEK SHUKLA
ANKIT KUMAR PANDEY
ANIRBAN PATHAK
机构
[1] Jaypee Institute of Information Technology,
[2] Indian Institute of Science Education and Research,undefined
来源
关键词
Benford’s distribution; exoplanets; significant digit law;
D O I
暂无
中图分类号
学科分类号
摘要
In many real life situations, it is observed that the first digits (i.e., 1,2,…,9) of a numerical data-set, which is expressed using decimal system, do not follow a uniform distribution. In fact, the probability of occurrence of these digits decreases in an almost exponential fashion starting from 30.1 % for 1 to 4.6 % for 9. Specifically, smaller numbers are favoured by nature in accordance with a logarithmic distribution law, which is referred to as Benford’s law. The existence and applicability of this empirical law have been extensively studied by physicists, accountants, computer scientists, mathematicians, statisticians, etc., and it has been observed that a large number of data-sets related to diverse problems follow this distribution. However, except two recent works related to astronomy, applicability of Benford’s law has not been tested for extrasolar objects. Motivated by this fact, this paper investigates the existence of Benford’s distribution in the extrasolar world using Kepler data for exoplanets. The quantitative investigations have revealed the presence of Benford’s distribution in various physical properties of these exoplanets. Further, some specific comments have been made on the possible generalizations of the obtained results, its potential applications in analysing the data-set of candidate exoplanets.
引用
收藏
相关论文
共 50 条
  • [11] Uniform distribution, Benford's law and scale-invariance
    Volcic, Aljosa
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (04): : 539 - 543
  • [12] Uniform distribution, Benford’s law and scale-invariance
    Aljoša Volčič
    Bollettino dell'Unione Matematica Italiana, 2020, 13 : 539 - 543
  • [13] Does china income FSDs follow Benford? A comrarison between Chinese income First significant digit distribution with Benford distribution
    Fu, Qiuzi
    Villas-Boas, Sofia B.
    Judge, George
    CHINA ECONOMIC JOURNAL, 2019, 12 (01) : 68 - 76
  • [14] Genome Sizes and the Benford Distribution
    Friar, James L.
    Goldman, Terrance
    Perez-Mercader, Juan
    PLOS ONE, 2012, 7 (05):
  • [15] Benford's law and the FSD distribution of economic behavioral micro data
    Villas-Boas, Sofia B.
    Fu, Qiuzi
    Judge, George
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 711 - 719
  • [16] Benford's law and distribution functions of sequences in (0,1)
    Balaz, V.
    Nagasaka, K.
    Strauch, O.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 449 - 463
  • [17] Benford's Wallet
    Tartan, Chloe Ceren
    Vaughan, Owen
    Wright, Craig Steven
    Zhang, Wei
    2022 IEEE 1ST GLOBAL EMERGING TECHNOLOGY BLOCKCHAIN FORUM: BLOCKCHAIN & BEYOND, IGETBLOCKCHAIN, 2022,
  • [18] HFD (H-function distribution) and Benford's law.: I
    Kulikova, A. A.
    Prokhorov, Yu. V.
    Khokhlov, V. I.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2006, 50 (02) : 311 - 315
  • [19] Images and Benford's law
    Jolion, JM
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2001, 14 (01) : 73 - 81
  • [20] BENFORD'S LAW BLUNDERS
    Hill, Theodore P.
    AMERICAN STATISTICIAN, 2011, 65 (02): : 141 - 141